
Anomaly-based Filtering of Application-Layer DDoS Against DNS Authoritatives

Jonas Bushart
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
jonas.bushart@cispa.de

Christian Rossow
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
rossow@cispa.de

Abstract—Authoritative DNS infrastructures are at the core
of the Internet ecosystem. But how resilient are typical
authoritative DNS name servers against application-layer
Denial-of-Service attacks? In this paper, with the help of
a large country-code TLD operator, we assess the expected
attack load and DoS countermeasures. We find that standard
botnets or even single-homed attackers can overload the
computational resources of authoritative name servers—even
if redundancy such as anycast is in place. To prevent the
resulting devastating DNS outages, we assess how effective
upstream filters can be as a last resort. We propose an
anomaly detection defense that allows both, well-behaving
high-volume DNS resolvers as well as low-volume clients to
continue name lookups—while blocking most of the attack
traffic. Upstream ISPs or IXPs can deploy our scheme and
drop attack traffic to reasonable query loads at or below
100k queries per second at a false positive rate of 1.2% to
5.7% (median 2.4%).

1. Introduction

The Domain Name System (DNS) is at the core of
Internet operations. Nearly all online services rely on
DNS. Consequently, any DNS outage has broad conse-
quences. For example, in July 2021, major online services,
incl. Airbnb, FedEx, UPS, and large gaming networks
(Steam, PlayStation Network), were unavailable for 30–
60 minutes due to a DNS configuration issue at Akamai.
In October 2016, a Distributed Denial-of-Service (DDoS)
attack against DNS provider Dyn resulted in an hour-long
downtime of Twitter, Amazon, Netflix, Spotify, and others.
DNS outages become particularly critical higher up in the
hierarchy. If top-level-domain (TLD) authoritatives are un-
responsive, it interrupts the entire ecosystems underneath.
The .com zone alone delegates more than 160 million
domains to name servers lower down in the hierarchy.
TLD outages have severe consequences for all services
relying on this TLD. Any name lookups of these domains
(or subdomains) strictly depend on the availability of the
TLD name servers. While caching at DNS resolvers may
delay the attack effect in some cases, caching is only
effective for recently-resolved domains and clearly does
not help against DNS outages in the long run.

Therefore, TLD operators aim to maintain high avail-
ability and responsiveness. They design the DNS infras-
tructure to be less susceptible to temporal traffic spikes.
Redundancy and anycast infrastructures are typically at
the core of these efforts. Most TLD zones are operated in

one or more anycast “clouds”, i.e., multiple geographically
scattered name servers announce the same name server IP
address. DNS resolvers will transparently contact the best
(typically, “closest”) anycast location for name resolution.
Anycast is a significant pillar against DoS attacks. Single-
sourced DoS attacks can only target a single anycast
location, not the entire cloud at once. Likewise, DDoS
attacks lose power, as they are automatically scattered
among multiple anycast locations. Furthermore, when un-
der attack, DNS operators can strategically update their
BGP announcements to shift traffic from overloaded sites
to those that still have resources. Rizvi et al. recently
proposed so-called network playbooks that systematically
automate this process [41]. Furthermore, DNS operators
can use so-called scrubbing services to filter volumetric
DDoS attacks that would otherwise overload the overall
aggregated capacity of all anycast locations. For exam-
ple, amplification attacks [42] allow adversaries to multi-
ply their bandwidth by orders of magnitude and scatter
the attack traffic across multiple sources—resulting in
distributed target bandwidths that reach Tbit/s. Having
said this, amplification attack traffic does not follow nor-
mal usage patterns of requests-facing authoritative name
servers [27], [28] and can be trivially filtered upstream.

But can existing defenses cope with targeted DDoS
attacks against DNS infrastructures? In contrast to volu-
metric attacks, DNS application-level attacks blend into
normal DNS traffic that follows valid semantics. Conse-
quently, such attacks evade content-based filters. More-
over, as we will show, powerful application-level DoS at-
tacks can easily overload DNS anycast infrastructures. For
example, botnets may send massive volumes of benign-
looking DNS queries that exceed the total (bandwidth
or computational) capacity of DNS anycast setups. Even
strategic traffic rerouting via BGP cannot mitigate this
threat if the overall provisioning capacity falls short of
the attack resources. The recent past has already docu-
mented application-level incidents in the form of random-
subdomain attacks [10], [49], [54] (which force authorita-
tives to respond to non-existing query domains), and other
DNS-specific attacks are possible [7], [27], [35]. When
existing defenses such as content-based filters and anycast
fail, what remains? If DNS operators lack resources to
mitigate massive attacks on their own, upstream filtering
remains the ultimate resort to prevent severe outages.

In this paper, we explore if upstream providers can
leverage past resolver behavior to shield downstream DNS
infrastructures. Given that attackers can evade content-
based filters, we explore anomaly detection as ultima

mailto:jonas.bushart@cispa.de
mailto:rossow@cispa.de

ratio. Our goal is to enable upstreams to reliably filter
malicious traffic before it reaches the authoritative name
servers. To this end, we leverage past DNS lookup profiles
derived from NetFlow statistics [4], [8], [9] to build behav-
ioral profiles of DNS resolvers. TLD operators can learn
such models before the attack and send them upstream—
e.g., to scrubbing services or upstream providers using
BGP Flowspec [32]—to filter attack traffic on demand. In
principle, upstream filters can shield DNS infrastructures
from abusive queries, mitigating application-level attacks
that flood authoritatives with semantically-valid lookups.

When designing DDoS defenses for DNS, we have to
overcome several obstacles. First, the set and behavior of
DNS resolvers are dynamic due to network churn and tem-
poral activities. Thus, anomaly detection cannot assume
a static set of resolvers in an attempt to identify benign
clients. Second, to retain net neutrality, we would like to
avoid giving preference to large resolver operators (e.g.,
Quad9, Google DNS). That is, a defense should not favor
“heavy hitters” (e.g., due to their sheer query volume),
as not to discriminate against smaller decentralized DNS
resolvers. And finally, if attackers can abuse resolvers that
also serve benign users, DNS operators cannot clearly
distinguish between “good” and “bad” resolvers.

In collaboration with a large European TLD operator,
we propose a two-layered defense applied upstream to
address these challenges. A low-pass filter allows DNS
queries to pass if a resolver is below a particular query
volume. We augment this low-pass filter with an allowlist
of well-behaving, high-profile resolvers extracted from
past behavioral profiles. We test our methodology on a
real-world dataset of a large country-code TLD (ccTLD)
operator that hosts one of the ten most popular TLDs
worldwide1. To this end, we model two application-level
DDoS attackers: (1) leveraging DDoS-capable botnets and
(2) abusing open DNS resolvers. We then align attack data
following these models with query behaviors recorded at
the global anycast network of the TLD zone. Data fusion
grants insights into the effectiveness and accuracy of the
proposed countermeasure. We show that by training just
one hour before the attacks, our last resort defense can
reduce the attack traffic to reasonable levels at or below
100 kpps (packets per second) while dropping only 1.2%
to 5.7% (median 2.4%) of queries from benign clients.

To summarize, we present the following contributions:
• We provide insights into the daily operations of a

large ccTLD provider and demonstrate the typical
client population of their anycast infrastructure.

• We model two powerful DNS application-layer
(D)DoS attacks and evaluate their impacts on the
distributed TLD infrastructure.

• We introduce a low-pass filter based on anomaly
detection that can be readily deployed upstream
to mitigate application-layer DDoS attacks against
Authoritative Name Servers (AuthNSes).

2. Background

This section outlines how modern authoritative DNS
infrastructures are designed and how they achieve perfor-
mance and resilience.

1. Source: Statista [46]; due to an NDA we cannot name the operator.

a.nic.tld

b.nic.tld

DNS client

recursive
resolver

B
G

P
R

ou
tin

g
B

G
P

R
ou

tin
g

Figure 1: Example AuthNS setup with two NS records
for two anycast clouds (a.nic.tld). Each cloud has multiple
sites (blue servers). A resolver sends traffic to a specific
cloud; BGP routing determines the site within a cloud.

2.1. Modern AuthNS Infrastructures

Redundancy is key to ensuring availability, resilience,
and load balancing. Instead of only providing a single
large DNS server, the service is distributed across multiple
servers. This limits the impact of a broken server and
allows for better performance by placing these close to
the clients, thus reducing network latency.

Modern DNS infrastructures leverage two core mech-
anisms to obtain redundancy, both are visualized in Fig. 1.
First, DNS operators announce multiple IP addresses for
each zone, such that clients can choose a “good” server.
A zone lists the AuthNSes in the NS records—at least
two, but often more. Each NS record can point to one or
multiple IP addresses via the A (IPv4) and AAAA (IPv6)
resource records. A DNS client sends queries to any such
IP address. Usually, the client would pick a low-latency
name server and leverage the fallback options in case the
preferred server is unresponsive.

Second, DNS operators use anycast and load balancers
to place multiple servers behind the same IP address.
BGP-based anycast allows announcing the same IP ad-
dress space from multiple physical locations. Depend-
ing on the client’s network origin, one of these anycast
locations will receive and respond to the DNS request.
The set of clients each AuthNS serves is its catchment.
The catchment depends on the BGP announcement, the
upstream provider connections, and the total number of lo-
cations announcing the same prefix. BGP allows operators
to withdraw route announcements for faulty locations or
add new locations to distribute the load more evenly. The
convergence time is lower than the Time-to-Live (TTL) of
NS records, providing faster reactions. By using anycast,
DNS infrastructures can place servers in the physical
proximity of their clients, reducing latency, especially if
it avoids transcontinental traffic.

Not surprisingly, most popularly-used DNS infrastruc-
tures, therefore, use such anycast setups, as described by
Sommese at al. [44]. They measured DNS infrastructures
between 2017 and 2021. They find that 76.2% of the
TLDs consistently use anycast, and only 3.4% are solely
using unicast—the rest has a mixed setup. Furthermore,
even the majority of second-level domains (SLDs) are now
using anycast, with an ever higher rate among new SLDs.
The adoption of anycast for SLDs is largely driven by
big operators such as GoDaddy or Cloudflare. Given that
these operators host millions of domains, their choice of
anycast has a large impact.

2.2. DDoS Mitigation at the AuthNS

Regardless of the exact setup, DNS deployments face
two main performance limitations: (i) compute power and
(ii) network bandwidth [24]. Compute power is especially
important for large zones with millions of registered do-
mains, such as multiple European ones [3], [14], [39],
[43], [55]. Large zones require more memory to store, and
lookups become more expensive due to cache misses and
necessary comparisons. Upload bandwidth can become
scarce for DNSSEC-signed zones [53]. Cryptographic
keys can be multiple kilobytes in size, and signatures take
up hundreds of bytes. In the worst case, responses are up
to 4KiB large, where fewer than 500 kqps can exhaust a
10Gbit/s connection. An AuthNS can respond to DNS
queries in the range of 100 kqps to 10 000 kqps [16], [24],
[25], depending, among other things, on the zone file,
software, configuration, and network connection.

To cope with traffic spikes, DNS operators leverage
over-provisioning and provide more bandwidth and com-
pute power than necessary for daily operations. Many
DNS operators over-provision about 10× to 100× more
than the daily peak [11], [16], [24], [48]. This is enough to
mitigate many small DoS attacks but is powerless against
targeted DDoS attacks. Furthermore, over-provisioning is
expensive, as it entails buying services and keeping them
unused for most of the time. Being economically more
attractive, on-demand scaling allows adding new resources
to meet rising demands. It can cope with demands far
larger than solvable with over-provisioning without per-
manently investing in unused infrastructure. Having said
this, scaling needs to be set up and tested before an attack.
Further, operational and policy constraints may apply and
making this mitigation difficult of unfeasible to deploy.

Scrubbing services turn the concept of over-
provisioning into a service. Here, the defense capabil-
ity is shared and amortized among many customers. A
scrubbing service announces the IP address space of the
attack target to “steal” its traffic, then filters the traffic, and
finally, forwards the cleaned traffic via a tunnel to the cus-
tomer. Scrubbing services are effective against volumetric
attacks, such as amplification attacks, as they carry charac-
teristic patterns. In such attacks, an AuthNS should never
receive DNS responses but only DNS queries. However,
they fail on application-layer attacks if the semantically
valid attack traffic does not per se allow separating benign
from malicious intent. This is further hampered if the
scrubbing service is enabled only on demand since that
prevents the service from learning the typical traffic profile
and identifying anomalies.

Finally, there are mitigations if attacks only overload a
single anycast location but not the entire anycast network
capacity. Operators can then use BGP to steer traffic from
overloaded anycasted servers to less-utilized ones [41].
This shifts the traffic such that no single location is
overwhelmed. The efficiency of this mitigation depends on
the BGP capabilities at each location. Generally available
techniques, such as BGP path prepending, are imprecise
and only remove traffic from the prepended locations.
Either way, BGP rerouting only works for smaller attacks,
but as we will show, it cannot protect against large DDoS
incidents that overload the entire anycast infrastructure.

3. Problem Statement

Attacks against the DNS infrastructure have devas-
tating effects [12], [23], [36], [45]. In this work, we
focus on powerful application-layer attacks in particular,
as they—surprisingly—represent an attack class for which
DNS operators currently lack solid defenses. This section
clarifies our threat model (Section 3.1) and then shows that
existing defenses do not cope well with application-layer
attacks (Section 3.2).

3.1. Threat Model

In this work, we consider a powerful application-layer
attacker that aims to overwhelm AuthNSes with valid
DNS queries. We focus on this attack category, as such
attacks are harder to defend at the network layer (e.g., by
scrubbing services). Unlike semantics-ignoring floods, de-
fenses against application-layer attacks require application
context. That is, we assume attacks that flood AuthNSes
with syntactically and semantically valid DNS queries,
either directly or via intermediaries (recursives). Requests
can be for random non-existing names, similar to random
subdomain attacks [10], [49], or to the millions of existing
domains [3], [14], [39], [43], [55]. For the remainder of
this work, the actual query content is irrelevant. In fact,
we assume that a defense cannot filter for benign requests
based on their content.

We envision attackers that use real systems to attack
directly (e.g., by a botnet) or indirectly (by using closed
and open resolvers as intermediaries). Using intermedi-
aries allows attackers to hide the true originating source
IP address and abuses resolvers that benign users might
also use. This makes detection a bit trickier, as we may
falsely filter traffic of benign users (“false positives”).

We assume that attack traffic does not use IP address
spoofing. Spoofed traffic can be filtered upstream, e.g.,
by enforcing that clients complete a handshake. This
can be achieved with TCP, which is an implementation
requirement [15] for any DNS software, or by using DNS
Cookies [1], [47]. Both the TCP handshake and DNS
Cookies require the client to echo back a value sent by the
server, thus enforcing validity of the source IP address.

3.2. DNS-Specific Non-solutions

Although various DNS features may mitigate DDoS
attacks, they are no match for them in our threat model.
One significant limitation is that many either require
support inside the resolvers or run fully resolver-side.
As such, an AuthNS cannot expect these techniques to
function since (i) many resolvers lack support and/or (ii)
direct attacks do not need to adhere to these features. For
completeness, we iterate these defenses in the following.

Negative caching: Aggressive negative caching [18]
enables a resolver to answer new queries without any
additional requests. This only works for DNSSEC-signed
zones and only if the NSEC3 opt-out mode is not used.
Dynamic signing [19], [57] can also prohibit the usage
and DNSSEC deployment is still quite low, such that not
many zones can benefit. Many TLDs are signed, but often
using the opt-out mode since it requires fewer signed
resource records, such that these TLDs cannot benefit.

Using DNSSEC induces extra load on the AuthNSes since
more records need to be stored, and upload bandwidth can
become a bottleneck due to the large size of public keys
and signatures. Finally, negative caching does not apply
to existing records—as TLD zones that usually have tens
(or hundreds) of millions of records, attackers can abuse
those despite caching.

Response Rate Limiting (RRL): RRL [20], [56] lim-
its the number of responses a DNS server sends per client.
RRL thereby effectively limits the impact of name servers
during amplification attacks. However, filtering is done
only after generating a response. RRL thus only reduces
upload bandwidth but does not save inbound bandwidth
or processing time. In fact, processing requirements may
even increase due to additional bookkeeping. To be ef-
fective in our scenario, RRL would have to be applied at
the DNS client side. Indeed, some recursives even imple-
ment limits on outgoing queries to an AuthNS [21], [22],
reducing overall traffic once the AuthNS is overloaded.
Having said this, attackers are not bound to adhere to this
pattern and can avoid such resolvers or even implement
their own iterative lookup logic.

Stale Records: Lastly, recursives may mitigate the
impact of an AuthNS’s outage and serve records past their
TTL time, so-called stale records [31]. This is effective
in reducing queries while the AuthNS is unresponsive,
but requires resolver support and deprives the AuthNS of
its power of updating the records’ data. Stale records can
thus only be seen as a fallback “solution” to a situation
(outage) that should really be prevented more proactively.

4. Methodology

We introduce an anomaly filtering methodology to
mitigate non-spoofed application-layer attacks against Au-
thNSes. Before doing so, we explain the design goals of
our envisioned defense in Section 4.1, then present our
proposed defense methodology in Section 4.2, and discuss
its deployment in Section 4.3.

4.1. Design Goals

In consultation with a partnering TLD operator
(cf. Section 5.1), we derive eight design goals for a DNS
application-layer DDoS defense:
G1: Offer DDoS Protection, even for Large TLDs.
First and foremost, the defense should mitigate DDoS
attacks such that only a manageable traffic level reaches
the AuthNS infrastructure. It is an explicit non-goal
to eliminate all attack traffic; it is sufficient if any
remaining malicious queries do not overload any of the
AuthNS’s resources. Typical AuthNS can easily cope
with up to 500 kpps, but struggle with loads higher than
10Mpps [16], [24], [25]. Any defense should keep the
attack volume below the former query rate, even if the
AuthNSes hosts a reasonably large zone (e.g., a TLD).
G2: Independence from Client Support. The
DNS ecosystem consists of various DNS resolver
implementations, versions, and configurations [6], [26],
[40], [50], [52]. Thus, any DDoS defense must not rely
on AuthNS clients implementing certain optional DNS
features that theoretically could mitigate an attack.

G3: Upstream Filtering and Learning. If attack traffic
arrives at the AuthNSes, it is “too late”. Therefore, we
study defenses that can be applied upstream by providers
or scrubbing services. The filter needs to integrate into
the current environment of servers and anti-DoS solu-
tions. They are the only locations with the capacity to
remove attack traffic before it overloads the servers or
data centers’ network connection. The simplest filter with
wide support is an allowlist/denylist of IP prefixes (in our
setting, networks of recursives). The lists are easy to share,
well understood, and have support for upstreaming, e.g.,
using BGP FlowSpec [32], [33]. An upstream provider
should itself even be able to derive the filtering policies.
G4: Content-Agnostic Filtering. Defenses should not
rely on DNS request content. First, we want to minimize
privacy leaks and do not want to require an upstream
to constantly inspect privacy-sensitive DNS communi-
cation content to filter attacks. Second, content filters
are unreliable—attackers can easily adapt their tactics by
querying arbitrary (semantically valid) DNS records.
G5: High Evasion Resilience. Acknowledging that any
defense can be evaded by attackers with an unlimited
budget, we aim to resilience against evasion to render
evasion attempts intractable in practice.
G6: Low False Positive Rate. The ultimate dilemma
any attack prevention mechanism faces is that it has to
distinguish between benign and malicious intent. In our
setting, we believe that a defense does not need to filter
all malicious or anomalous traffic. The ccTLD operator
has sufficient over-provisioning for everyday events, and
together with caching in DNS resolvers, this is a solid
baseline defense. In fact, overzealous blocking causes
collateral damage. Filtered benign requests harm clients
such as critical infrastructures, given DNS’s central role in
many networks. Such false positives even risk amplifying
the attack due to the retry behavior of clients.
G7: Ease of Use and Low Costs. We believe DDoS de-
fenses have to be easy to use, especially in pressing and
hectic times such as during a DDoS attack. Defenses
should incur minimal costs before deployment and instead
rely on existing network infrastructures and features. For
example, the proactive collection of traffic statistics for IP
prefixes can be done inexpensively on an AuthNS’s router
(or its upstream) in the form of NetFlow [4], [8], [9] data
or a sampled stream of IP packets.
G8: Resource Neutrality. Defenses should not rely on
adding resources at the DNS operator. While more re-
sources may indeed provide a mid-term solution to higher
loads, the defense should be able to handle temporal
DDoS attacks that last 1–2 days max.

4.2. Anomaly Filtering

With these design goals in mind, we propose a defense
based on anomaly detection specifically tailored for DNS
operators. The key idea is to learn an expected traffic level
for each source and use this to identify sources that send
unexpectedly high amounts of traffic. This idea follows
the observation that a DNS operator’s traffic distribution
matches a long-tail distribution, in which only a few
sources are responsible for the vast amount of traffic.
Consequently, we aim to filter traffic of DDoS attacks

that abuse previously unobserved high-volume clients,
independent of the content of queries (G4).

We approach this by classifying resolvers into three
different traffic behaviors. (1) Low-volume clients have a
relatively low traffic volume and never show traffic spikes.
Low-volume clients can be active throughout an entire
measurement period or only for a short time. (2) In con-
trast, steady high-volume clients send a continuous, large
stream of DNS queries. (3) Finally, and most challenging,
we observe sporadic high-volume clients which emit high
but sporadic query spikes, e.g., outlier spikes that only
occur temporarily in a longer measurement interval.

To judge which category a client falls in, we monitor
content-agnostic (G4) traffic statistics at the AuthNSes.
Such data is available to both the DNS operator itself and
its upstream providers (G3). We split a training dataset
into time intervals and traverse this dataset using a sliding
window of length Wtrain over time intervals of one hour.
Per window, we count how many queries each source IP
network (/24 for IPv4 and /48 for IPv6) sends. We regard
a network as a steady high-volume client if it is active
for at least STEADY time intervals and shows an average
query rate of at least HEAVY packets per hour. All other
networks either contain low-volume clients or sporadic
high-volume clients only. Figure 2 shows one example run
of this algorithm, where the first twelve windows are used
for training, and the next six show the attack. The color
during the attacks shows if traffic is unrestricted (green)
or if some traffic is filtered (orange–red). The “active” and
“max Ti” columns show if the value is large enough for
allowlist inclusion.

Allowlist Creation: We now leverage this classifica-
tion to build a defense that allows continuous operation of
the benign clients while blocking abnormal query profiles.
To this end, we build an allowlist that includes steady
high-volume clients. For each client network i, we record
its maximum past traffic level Ti, measured in packets
per hour. We use this past traffic level to detect if an IP
network sends unexpected amounts of traffic during the
attack phase. To cope with situations in which a benign
client increases its query volume, we introduce a tolerance
factor TOL. During the filtering period, for an allowlisted
client i, we only block all i’s queries that exceed Ti×TOL.
This combination provides flexibility in how strict the
filtering is as it compensates for traffic variability.

The allowlist does not capture low-volume and spo-
radic high-volume clients. We exclude low-volume clients
to keep the allowlist reasonably small and manageable
(G3). Ignoring sporadic high-volume clients makes it
harder for an attacker to poison the training phase (G5).
Yet, combined, these two query profiles likely still con-
tribute a significant amount of the overall traffic. Just
blocking all low-volume clients would create too many
false positives, violating G6. Therefore, we permit a
certain low traffic volume (LPF) for any traffic source
not on the allowlist. Each non-allowlisted origin network
can send as many queries as this low pass filter al-
lows. Traffic exceeding this limit will be blocked. This
policy allows low-volume sources to always reach the
AuthNS—irrespective of whether the low-volume client
sends only sporadic or continuous traffic. The LPF also
allows queries of new low-volume clients, i.e., those not
part of the training phase. The LPF only (but unavoidably)

penalizes high sporadic traffic spikes of benign clients.
Site-specific Allowlists: Modern DNS infrastructures

operate multiple logical AuthNS, separated by clouds (i.e.,
anycast IP addresses) and topological locations. We call
each such logical AuthNS a site. Each combination of
physical location and anycast IP address has a different
catchment, meaning that IP networks visible on one any-
cast IP address for a location may not appear for the
other anycast IPs. As client query behaviors may differ
substantially between sites, and to minimize allowlists
to ease deployment (G7), we train site-specific allowlists
instead of a global one.

Filtering Phase: The filtering phase immediately suc-
ceeds the training phase and is assumed to contain attack
traffic. During this phase, any source network may send
up to LPF queries and allowlisted networks even more
according to their past query volumes and the tolerance
factor. Traffic that exceeds these limits will be blocked. We
do not assume a certain length on the attack; we show in
Section 5.4.4 the impact of attack lengths on detection ac-
curacy. Our current prototype does not leverage retraining
when under attack. That is, the allowlist is fixed as long
as filtering is active, such that it ages and will slowly drift
away from the current resolver population—an effect that
we evaluate in Section 5.5. Having said this, we envision
continuous retraining until a noticeable attack starts. This
way, defenders have a recently trained detection model at
hand when they most urgently need it.

4.3. Upstream Filtering

After having described how we filter traffic with our
anomaly detection, we now discuss where filtering occurs.
Filtering attacks at the AuthNS infrastructure comes too
late. The downstream connection to the server or data
center might already experience packet loss, or the server
cannot handle filtering fast enough. As such, it is benefi-
cial to offload filtering to upstream parties with sufficient
bandwidth and processing power (G3). Commercial ser-
vices such as scrubbing services or upstream ISPs/IXPs
are perfect candidates. Such upstream services can filter
and train the allowlist—all under the assumption that
they have constant access to the network traffic to learn
its characteristics. Indeed, the curated aggregated traffic
statistics required for training can be captured/provided
by NetFlow-like summaries that retain user privacy.

In some situations, upstream training is not possi-
ble or desired, though. If scrubbing services are enabled
“on demand”—only to mitigate an ongoing attack—they
lack past behavior to build accurate defense models. In
fact, AuthNS operators may deliberately choose to enable
scrubbing services only when really necessary (i) to save
costs, (ii) to preserve user privacy, and (iii) to improve
latency. In addition, upstream providers may lack the
incentive to train behavioral models for their customers.
In these cases, the DNS operator can train the allowlist
themselves and push its filter decisions upstream, e.g.,
using standards such as BGP FlowSpec [32], [33] or
proprietary APIs provided by upstream providers. The al-
lowlist enforcement can then be implemented in software,
such as using eBPF/XDP, or even closer to the hardware
in P4-programmable switches.

window: w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 Active Parameter Value
Resolver A (allowlist) 19 28 21 18 15 18 29 29 30 35 33 31 26 22 20 17 22 18 12 35 HEAVY 10
Resolver B (allowlist) 11 14 4 7 19 15 5 4 8 19 9 10 88 74 99 86 70 77 12 19 LPF 20
Resolver C (LPF) 0 0 2 0 0 0 0 0 3 0 0 0 0 0 5 1 0 0 2 3 STEADY 5
Resolver D (LPF) 0 0 2 0 4 0 0 0 5 12 0 0 5 30 10 23 0 2 4 12 TOL 2

Max Tᵢ

Figure 2: Application of our algorithm on an attack in windows w13 to w18 with four resolvers. The “active” and “max
Ti” columns show if the value is large enough for allowlist inclusion. Resolvers A and B were added to the allowlist,
and resolvers C and D were too low volume during the training phase. Resolver A behaves normally during training
and attack, such that all its traffic passes the filter. An attacker abuses resolver B to launch an attack, such that we
filter B’s traffic (orange/red color), causing FPs in the benign fraction of B’s traffic. Resolver C maintains a low query
volume (≤ LPF) and does not experience FPs. Finally, resolver D’s temporal volume spikes cause a few FPs.

Costs: Finally, we analyze the costs (G7) for the envi-
sioned deployment. We discuss the allowlist creation and
filter enforcement separately. The allowlist maintenance
does not incur extra costs. TLD operators can easily (or
already do) record statistical traffic information such as
NetFlow data. For moderate training intervals of a few
days, storage costs are negligible; so are the computational
costs for creating the allowlists, which mostly requires
inexpensive statistical analyzes. The costs for filtering, i.e.,
the actual enforcement, are a bit harder to estimate. But
assuming that larger TLD operators have subscriptions
with scrubbing services anyway, they need agreements
for allowlists paired with rate limiting—standard features
of most scrubbing services. In the worst case, filtering
requires a new appliance or P4-programmable switch,
creating one-time costs in the range of $2000 per physical
AuthNS location plus hosting fees. Overall, these worst-
case costs are significantly lower than the economic dam-
age of DNS outages at a TLD.

5. Evaluation

We now evaluate how effective an anomaly detec-
tion defense, as described in the previous section, can
be against large-scale DDoS attacks. To this end, we
acquire an attack-free DNS query dataset of a large TLD
provider (Section 5.1). We then study the typical query
behavior of benign clients in this dataset (Section 5.2). To
model attacks, we obtain populations from two popular
botnets and open resolvers (Section 5.3). We then train
a detection model based on the benign dataset, optimize
parameters, and evaluate the optimized model against the
modeled attacks (Section 5.4). Finally, we assess to what
extent concept drift (Section 5.5) and evasion attempts
(Section 5.6) impede the proposed idea.

5.1. Dataset Description

We cooperate with one of the largest European (and
global) ccTLD operators2 to obtain a realistic evaluation
dataset. The operator is authoritative for over 17 million
domains, all of which are configured with a Time-to-Live
(TTL) (caching) time of 24 hours. The anycast setup of
our ccTLD consists of five anycast clouds, each having
two to eight locations. A visualization is included in
Section A. These locations are distributed over multiple
countries. Overall, five to seven anycast locations are in
the ccTLD country itself, Europe, and the rest of the

2. We redact the concrete TLD for anonymity.

TABLE 1: Capture statistics of both anycast clouds in the
NetFlow dataset. The prefixes and packets are split evenly.

Cloud Locations Prefixes v4 Prefixes v6 Packets

C1 8∗ 968 915 105 565 4 563 713 484
C2 7∗ 928 893 101 790 4 683 252 517

world, respectively. Some physical locations are part of
multiple clouds; we call a unique (cloud, location) tuple
a site to resolve ambiguities.

Our TLD partner gave us access to four weeks of
traffic statistics recorded at sites in the two largest anycast
clouds. The collection period was 2022-05-13 06:00 UTC
to 2022-06-09 06:00 UTC. To make data size manageable
for the operator, the recorded data is randomly sampled
per IP packet at a rate of one-to-ten. Due to processing
errors, one location is missing 18 hours, and another one
was not monitored at all; having said this, the dataset
still represents a vast majority of the DNS query behavior
observed at these two zones. The traffic and observable IP
networks are pretty even between the two anycast clouds,
see Table 1. Overall, our dataset spans 9 246 966 001
inbound packets from 1 185 657 different IP networks.
The traffic per physical locations ranges from 94 950 430
packets (31 544 networks) to 2 015 510 497 packets (from
511 063 networks). Due to the 1:10 sampling rate, the
real number of packets (and hence, DNS requests) will be
larger by a factor of ten.

Data Collection Ethics: Our partnering TLD provider
minimized data collection to preserve user privacy to
the best extent possible. First, the dataset only contains
NetFlow data, such that no DNS query names or responses
are recorded. Instead, we infer the number of queries from
the number of packets per flow and direction, with the
approximation that an IP packet corresponds to exactly
one query (modulo sampling). Second, the collected data
is aggregated based on Border Gateway Protocol (BGP)
routing granularity of /24 for IPv4 and /48 for IPv6 to
hide individual users. Third, the datasets were protected
by strict access control.

Sampling Bias: Due to sampling, we miss nine out of
ten DNS requests. Random sampling statistically guaran-
tees that we only miss low-volume senders, all of which
will pass any filter due to the LPF. This implies that
any false positives rate reported in the following is an
upper bound, and would likely be a few percent lower on
unsampled data. To estimate how many IP networks we
are missing due to the sampling, we inspect a secondary
dataset that consists of 24 hours of unsampled traffic

recorded on 2021-01-14 from 14:57 UTC.
To this end, for each IP network in the unsampled

dataset, we compute the probability that this IP network
would not appear in a sampled dataset. This probability
is P = (1 − 0.1)n for n queries received by the IP
network. Summing the individual probabilities tells us
how many IP networks we are likely missing. Indeed,
our main dataset does not observe 30.5%–42.9% of IP
networks per physical location, with a single exception
where only 24.8% of IP networks would be uncaptured.
However, over 99.5% of these IP networks send fewer
than 32 queries during the whole day, and 99.99% send
fewer than 64 queries during the day. Even though we
miss a significant portion of IP networks, these networks
only contribute 3.7%/5.4% of the overall traffic.

5.2. Benign Client Behavior Analysis

Before turning to the evaluation of the defense itself,
we analyze the DNS query behavior of client networks in
our dataset. The behavior of the AuthNS’s clients is quite
diverse. Most IP networks send few overall packets and
are ephemeral, only active for a couple of hours during
the whole time. Most IP networks send fewer than ten
packets per hour yet contribute less than 7.5% of the
recorded traffic. The networks with the highest query rates
are active over 90% of the time and are likely resolvers
of ISPs, cloud operators, and public DNS offerings, since
these have always active and large userbases. There are
some high-volume clients with overall short temporal ac-
tivity, which might be problematic for anomaly detection.
A more detailed description can be found in Section D.

The overall very moderate query rates are not unex-
pected, as the resource records in the ccTLD zone can be
cached for up to 24 hours. Overall, this seems to confirm
that most client networks fit the proposed low-pass filter
well. Having said this, the analysis also shows that there
is a need for exceptions using an allowlist. Larger query
rates, as observed in the heatmap, can occur for multiple
reasons. First, clients can look up millions of different
domains. The more popular a resolver, the more domains
it will query. Second, some recursives do not adhere to
the caching period and fetch data more frequently, which
can cause hundreds of millions of queries over a day due
to the larger zone file size. Third, some networks have a
large concentration of cache-independent resolvers, all of
which are merged in our analysis.

5.3. Attack Modeling

We now model attacks that target the DNS infrastruc-
ture as outlined in our threat model (Section 3.1). We
thereby distinguish between the type of traffic sources
an attacker chooses. As a single attack source will eas-
ily be blocked by the proposed filter without causing
much collateral damage, we assume distributed attacks.
We envision two possible attacks. First, as we explain in
Section 5.3.1, attackers can relay attack traffic via DNS
resolvers. Second, as we discuss in Section 5.3.1, a large
network of compromised hosts (“botnet”) may attack the
AuthNSes directly. After discussing these attacker models
in more detail, we use them in evaluating the proposed
methodology. Figure 3 visualizes both attack vectors.

a.nic.tld

b.nic.tld

DNS client

indire
ct

B
G

P
R

ou
tin

g
B

G
P

R
ou

tin
g

direct

recursive
resolver

Figure 3: The attacker can attack indirectly by abusing
benign resolvers (dashed lines) or query anycast clouds
directly (solid lines). Both vectors lead to different sites
(servers in the cloud). Indirect attacks increase the risk of
false positives if regular clients use the same resolver for
issuing benign requests (dotted lines).

5.3.1. Indirect Attack via Open Resolvers. Open re-
solvers represent an obvious choice for distributing an
application-layer attack against DNS. The intermediary
recursives hide the attacker’s identity and enable dis-
tributed attacks even for single-homed attackers. Further-
more, resolvers are topologically distributed, and thereby
also distribute the attack among all anycast locations.

The attacker can launch an indirect attack by abusing
pre-configured resolvers of ISPs, and anycast or unicast
open resolvers. The resolvers all act conceptually similar,
but differences between anycast and unicast are important.
Anycast resolvers, to which most public DNS offerings
belong, have a wide range of locations sharing the same IP
addresses. Thus it is likely that a location is “close” to the
attacker and will be in the same catchment as the attacker.
Alternatively, attackers can abuse unicast recursives. They
can be selected such that they have diverse network views
and can reach all locations of the anycasted AuthNS.

To model an attacker that abuses open resolvers,
we scanned the IPv4 landscape of open resolvers via
Zmap [17] and a custom DNS module. To this end, we
follow the recommended scanning guidelines by Zmap
and allow networks to opt out of the scans. The scans were
performed on 2022-06-09 at reduced speed and lasted
for 33 hours. Our scan generally identifies two types
of resolvers: forwarders and recursive resolvers. That is,
we find (1) the client-facing “scannable” recursives that
receive and respond to the query, which may (optionally)
forward the query to (2) server-facing recursives that
perform the actual iterative resolution at the AuthNS.
Furthermore, by including our own AuthNS infrastructure
in the DNS resolution chain, we can map the client-facing
scanned IP address (by encoding it into the query name) to
the server-facing IP address of the recursives that perform
the authoritative lookups.

Our IPv4 scan covered all geographic regions ex-
cept Russia.3 We find 919 174 scannable IP addresses in
374 464 networks of size /24 that contact our AuthNSes.
The recursives forward the DNS queries to 48 263 recur-
sives in 24 942 networks.

5.3.2. Direct Attack via Botnet. Instead of abusing re-
solvers, the attacker can also abuse a set of geographically

3. We excluded Russian target IP addresses from our scans as re-
quested by our network operator due to the political situation.

diverse bots to steer traffic directly to the victim AuthNS.
The diverse geographical locations of botnets allow the
attacker to reach all locations in the anycast cloud(s) to
attack all locations simultaneously.

To model botnet attackers, we analyze the population
of two large in-the-wild botnets. (1) Sality is a peer-to-peer
botnet targeting Microsoft Windows systems. On 2022-
05-28 we discovered 53 824 IPv4 bots by crawling the
Sality botnet. (2) Mirai-like bots are all hosts showing the
typical SSH and Telnet protocol scanning behavior. We
collect all SSH and Telnet connection attempts to a /20
large IPv4 darknet, i.e., a network without any hosts. We
collected 152 486 IP addresses in 100 366 Mirai-infected
IP networks between 2022-05-16 and 2022-06-22.

We then mapped these bots to their available attack
bandwidth. To this end, we leverage the Measurement
Lab [34] Network Diagnostic Tool (NDT) dataset, using
the measurement-lab.ndt.* subset. This dataset
was created via a dedicated network speed measurement
website, where users can measure their Internet connec-
tion. IP addresses without a measurement get attributed
the performance of the next smallest supernet, i.e., we
take the data associated with the /24, /22, /20, or /18. If
that is insufficient, we use the average bandwidth of all
bots at a specific anycast location.

Using this dataset, we find that the Sality band-
width ranges between 201Gbit/s to 2827Gbit/s (aver-
age 564Gbit/s) while Mirai has between 1149Gbit/s to
8947Gbit/s (average 2675Gbit/s). We use the maxi-
mum bandwidth for the later evaluations for a worst-case
analysis. The average bandwidths translate to 705Mpps
and 3343Mpps for Sality and Mirai, respectively. This
analysis reveals that attacks would have a devastating ef-
fect on the anycast setup of our partnering TLD operator.

5.4. Learning Parameters / Accuracy

We now evaluate the effects of these attackers against
the DNS infrastructures of our partnering ccTLD oper-
ator. To this end, we first define the metrics we will
use throughout the evaluation (Section 5.4.1). We then
describe how we select (Section 5.4.2) and optimize (Sec-
tion 5.4.3) the input parameters of the anomaly detection.
Finally, we evaluate how well the defense can mitigate the
attacks (Section 5.4.4).

5.4.1. Evaluation Metrics. We follow standard terminol-
ogy in our evaluation. We define malicious traffic as pos-
itive and correctly filtered DNS requests as true positive
(TP). Conversely, benign traffic is negative and benign
DNS requests that bypass the filter are true negatives
(TNs). A false positive (FP) is erroneously blocked benign
traffic, which can occur if a traffic source exceeds the
allowed traffic level Ti or LPF, respectively. A false
negative (FN) refers to undetected malicious traffic that
bypasses the filter, e.g., all attack packets per source that
do not exceed LPF packets. A FP negatively interferes
with DNS lookups of benign clients and has negative
consequences. In the best case, FPs just cause delays
in DNS resolutions, potentially opening resolvers up for
further attacks; in the worst case, they render entire
services (e.g., websites) unavailable. In contrast, a FN
just adds to the load and does not have any immediate

TABLE 2: Overview of the parameters we use in the
methodology and evaluation.

Parameter Description

HEAVY Minimum traffic level (in packets per hour) before
an IP network can be added to the allowlist.

LPF Traffic level (in packets per hour), which is allowed
without an allowlist entry for the IP network.

STEADY Minimum number of active hours before an IP net-
work can be added to the allowlist.

TOL Factor to use on Ti to calculate the allowed traffic
during the filtering phase, past which queries from
the IP network will be blocked.

Wtest Windows size during the test phase, i.e., the attack
length.

Wtrain Windows size during the training phase.

negative consequences if there are sufficient infrastructural
resources. In the following, we argue to minimize FPs
while maintaining an acceptable level of FNs.

Based on these classifications, we use standard evalu-
ation measures, such as false positive rate FPR = FP

FP+TN
and false negative rate FNR = FN

FN+TP , and their in-
verses TNR = 1 − FPR and TPR = 1 − FNR. To
combine both FPs and FNs, we report on the F-score
Fβ = (1+β2)∗TP

(1+β2)∗TP+β2∗FN+FP and balanced accuracy BA =

(TPR + TNR)/2. Having said this, in the following, we
optimize for and report on the FPR, as doing so still
reaches an acceptable number of FNs.

5.4.2. Parameter Values. We now perform a grid search
to find reasonable values for the training parameters
we declared in Table 2. To this end, we first specify
concrete value ranges for each parameter. We vary the
training time (Wtrain) between one hour and 73 hours.
The minimum traffic level for allowlist inclusion (HEAVY)
ranges between 64 pph to 256 pph (packets per hour).
The minimal active hours (STEADY) range from one to
twelve hours, with the constraint that they are always
smaller than Wtrain. The low-level traffic threshold (LPF)
varies between 128 pph to 2048 pph. We also allow traffic
sources to exceed the traffic levels (TOL) recorded in the
allowlist by the factor one (no exceeding), two, or four.

The attack is determined by another set of test param-
eters. The attack starts immediately following the training
phase (we will evaluate more outdated training models in
Section 5.5) and lasts between an hour and three days
(Wtest). For the simulation, we model different attacker
bandwidths from 1Gbit/s to terabit speed, depending on
the attacker model, and simulate different attack sources,
such as open resolver and different botnets.

5.4.3. Parameter Optimization. We use a grid search on
the aforementioned training parameters to find the best
parameter choices. We consider those parameters ideal
that minimizes the False Positive Rate (FPR). To this
end, we leverage sliding window cross-validation, a stan-
dard cross-validation technique for time series that avoids
mixing training and test data. It allows us to keep the
chronological data order and still have multiple folds, as
the test length is much smaller than our overall time series.
In our evaluation, we test all parameter combinations and
report on the one that worked best for a given site across
all folds. Figure 4 illustrates the general idea.

Data +
chosen

parameters TestTrain
Avg

TestTrain

TestTrain

Figure 4: Symbolic representation of the grid search ap-
proach to find the best parameter combination. Given a
fixed set of data and parameters, we pick distinct test
intervals and compute the average of the performance.

(a) Attacker with Mirai-like

(b) Open Resolver Attacker

Figure 5: Effect of the LPF and Wtest parameters on the
FPR and FNs. Each point represents a site’s performance
depending on LPF and Wtest. The graphs depict attackers
using a Mirai-like botnet and open resolvers.

As an alternative cross-validation concept, we also
tried an alternative cross-validation technique that opti-
mizes Parameters per sliding window instead of using
a fixed parameter configuration for all folds. This tech-
nique yields similar results yet requires constant param-
eter search. Consequently, in the following, we do not
differentiate between the two methods and only report on
results obtained from the global parameter search.

5.4.4. Results. Figure 5 shows results for an attack using
the Mirai-like botnet (top), and open resolver (bottom).
The same graph for Sality is in Section B. More detailed
statistics about the Mirai-like botnet are presented in Ta-
ble 3. The botnet uses the calculated maximum bandwidth,
and the open resolver graph uses a theoretical 100Tibit/s
attacker to show the worst-case behavior in both cases. It
shows the malicious traffic which needs processing after
filtering (x-axis) in comparison to the FPR the filtering
achieves (y-axis). Each point in the graph represents the
evaluation result for a given site. Color shows different
values for Wtest, while the symbol shape represents LPF.
As expected, the LPF has a significant impact on the
false negatives (x-axis) while the respective site and Wtest
influences false positives (y-axis). In fact, the four chosen
LPF thresholds result in four clearly separate clusters. The

TABLE 3: Detailed evaluation results for the Mirai-like
attacker from Fig. 5a, since it has the worst FPR values.
Normal counts each physical location identically, while
in the weighted columns each location is weighted by the
benign traffic levels. “Mdn” denotes the median.

Normal Weighted
Wtest LPF Min Avg Mdn Avg Mdn Max

8

128 0.06 0.10 0.10 0.10 0.10 0.14
512 0.03 0.07 0.07 0.07 0.07 0.11

2048 0.03 0.04 0.05 0.04 0.05 0.07
8192 0.02 0.03 0.02 0.03 0.02 0.05

24

128 0.06 0.11 0.10 0.11 0.10 0.18
512 0.03 0.07 0.07 0.07 0.07 0.14

2048 0.02 0.05 0.04 0.05 0.04 0.08
8192 0.01 0.03 0.03 0.03 0.03 0.05

72

128 0.06 0.13 0.11 0.13 0.11 0.23
512 0.03 0.09 0.08 0.09 0.08 0.19

2048 0.02 0.05 0.05 0.05 0.05 0.10
8192 0.01 0.03 0.02 0.03 0.02 0.06

TABLE 4: Attack traffic statistics for the evaluation results
of Fig. 5. Only results for Wtest = 24 are shown, as the test
length only has minimal impact on the results. The rows
contain the data for Sality, Mirai-like, and open Resolver.
Normal counts each physical location identically, while
in the weighted columns each location is weighted by the
benign traffic levels. “Mdn” denotes the median.

Normal Weighted
LPF Min Avg Mdn Avg Mdn Max

S

128 345 593 570 593 570 809
512 1380 2350 2282 2350 2282 3225

2048 5522 9378 9128 9378 9128 12 883
8192 22 087 37 495 36 511 37 495 36 511 51 519

M

128 818 1958 1482 1958 1482 8394
512 3270 5848 5778 5848 5778 12 535

2048 13 082 21 401 22 964 21 401 22 964 29 100
8192 52 323 83 603 91 704 83 603 91 704 109 446

R

128 733 1229 1187 1229 1187 1736
512 2932 4717 4565 4717 4565 6518

2048 11 728 18 645 17 965 18 645 17 965 25 643
8192 46 913 74 285 71 362 74 285 71 362 102 133

lower the attack duration, the lower the FPR. Some sites
have a larger FPR than others, for all attack lengths.

The graph shows how we can trade better FPR scores
by allowing larger amounts of malicious traffic. Larger
LPF values mean that benign sources, which do not occur
on the allowlist, are not as likely to be blocked and thus
decrease the false positives by them. As a downside, more
attack traffic will simultaneously be allowed. For exam-
ple, consider LPF = 2048 pph, the second-highest LPF
threshold in our evaluation. Here, the malicious traffic is
generally quite low, with less than 13 000 pps (left) or
26 000 (right) at any single location. This volume is well
in the realm of traffic an AuthNS can handle, and thus
prioritizing further reductions are not relevant. For 8-hour
long attacks and LPF = 2048 pph, the FPR is 4.2% on
median, ranging from 1.7% to 6.9% for the Sality botnet,
while ranging from 0.2% to 5.7% with a median of 2.5%
for the open resolver evaluation.

Wtest has a negative influence on the FPR due to
population churn. As the allowlist ages, it no longer
accurately mirrors the current state of benign resolvers.

Figure 6: Impact of static (non-retrained) allowlists on the
FPR based on three training lengths (one hour, one day,
three days). Higher means worse.

Resolver churn leads to “dead” entries on the allowlist,
which no longer match a resolver. Likewise, new resolvers
appear, which may get blocked if they exceed the LPF and
thereby increase the FPR.

5.5. Concept Drift

In the previous section, we observed a negative impact
of long time spans between training and testing. The main
reason for this decline is concept drift, which occurs
because the population of active resolvers changes by
hour and day. If the allowlist is not adapted accordingly,
previously unseen resolvers may cause false positives. We
evaluate this churn by artificially creating longer time
gaps between the allowlist creation and the attack. For
this, we train a static allowlist per site on the first Wtrain
intervals in our dataset and test it on all possible future
Wtest intervals. This experiment indicates how quickly
the allowlist becomes outdated and how often retraining
is necessary. As the amount of unfiltered attack traffic
is generally lower with the fixed allowlist, we omit an
analysis of traffic changes and focus solely on the FPR.

Figure 6 shows the performance impact of using a
static allowlist—compared to the standard procedure of
constantly retraining the allowlist (as described in Sec-
tion 5.4.2). The graph shows the evaluation performed
for a single exemplary large AuthNS location for three
training lengths (1 hour, 1 day, 3 days) and a fixed Wtest =
24 hours interval. Positive values indicate that the fixed al-
lowlist had a higher FPR. The shorter the training interval,
the higher the maximum negative impact on the FPR. In
fact, using short Wtrain results in a daily repeating pattern,
where the static allowlist at times performs better. This
is a result of diurnal patterns in the resolver population.
Every 24 hours, the fixed allowlist matches exactly from
the time of day it was created to the test interval, while the
normal allowlist is shifted by at least an hour. However,
this advantage is eaten up by large FPR increases at
other times. Still, it shows a potential improvement in the
allowlist creation to compensate for diurnal and weekly
patterns. Instead of only training on the preceding x hours,
we could additionally train on the previous day and week.

Longer training times result in patterns that fluctuate
less. But we also see larger dips for Wtrain = 24, resulting
from weekday-weekend shifts. The first training window
starts on a Friday but captures part of the weekend too.
This has positive effects on those weekend parts. Only
the 3-day training interval captures the behavior of a full
workday and the weekend, thus compensating for the

resolver population cycle. But this long training period
cannot account for longer shifts over weeks or months.

Independent of the training length, a static allowlist
always causes significantly more FPs than periodically
trained allowlists. Based on these results, we conclude
that periodic retraining is highly advisable.

5.6. Evasion

Any learning mechanism has to content with smart
attackers trying to evade the defense mechanisms. In our
case, we see two evasion possibilities.

First, attackers could try to have their attack sources
be allowlisted. For example, consider an attacker that
adds attacker-controlled IP networks to the allowlist. This
corresponds to a persistent attacker capable of placing
their nodes undetected into the seemingly benign resolver
population. For argument’s sake, we simulate that each of
the attacker networks is assigned a historic traffic level
Ti equal to the highest benign value in the allowlist.
Figure 7 shows the result of the evaluation with the at-
tacker being able to transmit up to 100Tibit/s. The graph
plots the number of IP networks that successfully evaded
the allowlist (x-axis) and the amount of attack traffic the
AuthNSes must process (y-axis). Each line represents a
different site. We showcase a single configuration for our
algorithm, the best-performing combination from Fig. 5
(LPF = 2048, Wtest = 24). Overall, we see the trend that
such evasion indeed leads to higher attack traffic. This
is expected, as the bandwidth granted by the allowlist
is significantly higher than the selected LPF value. The
increase per location heavily depends on the source of the
allowlisted attack hosts. In general, though, one can argue
that thousands of poisoned allowlist entries do not hurt.
Even 30 000 allowlisted attack sources seem uncritical;
in the worst case, this causes a few 100 000s of attack
requests per location. Having said this, this analysis in-
dicates that care must be taken not to allowlist too many
attack nodes. Indeed, the attack traffic increases roughly
linearly with the number of poisoned allowlist entries.

Second, attackers may try to influence the LPF and
TOL parameters, such that IPs not on the allowlist can
send much traffic. Having said this, we observed that
variations to the LPF and TOL parameters lead to similar
performance. Thus, retraining these parameters is usually
unnecessary, such that attackers cannot influence them.
Furthermore, attackers cannot significantly influence the
parameters without the AuthNS operator noticing, as the
changes stand out compared to previous models.

5.7. Insider Threats

Insider threats against our defense are possible. We
define three levels of access, each of which results in
different threats: 1) knowledge about the algorithm pa-
rameters, 2) knowledge of the allowlists per site, and 3)
modifications to the parameters or allowlist.

Knowledge of the algorithm parameters: Knowing
the exact parameters enables an attacker to inject IP
addresses into the allowlist during training more efficiently
than without such knowledge. For each host to inject,
a traffic profile using minimal theoretical bandwidth is
selected. For example, each host only needs to be active

Figure 7: Impact of randomly selected attacker nodes
added to the allowlist (x-axis) on the traffic in pps on
a log scale (y-axis). Each line represents a different site.

for STEADY intervals per training window. An insider
with parameter knowledge can thus save bandwidth by
not always using the full capabilities of an attack source.

Knowledge of the allowlist: An attacker informed
about the allowlist could aim to DoS a listed resolver
by sending traffic from the resolver’s IP range(s). This
exhausts the resolver’s traffic budget with mostly mali-
cious traffic, drowning out the resolver’s benign queries.
It requires the attacker to have IP addresses in the same
range as the victim4, which is possible for resolvers hosted
by cloud and shared hosting provides, but not for organi-
zations with their own IP space. The feasibility depends
on the aggregation level of the IP space, with stronger
aggregation (e.g., /16 for IPv4) making it easier.

Direct allowlist or parameter modifications: Finally,
we consider an unlikely yet strong attacker that finds a
way to directly modify the allowlist of algorithm param-
eters. Such a strong insider attack can render the defense
useless by picking rogue parameter values, enhancing
the allowlists, or DoS resolvers by emptying it. Hav-
ing said this, using standard access control mechanisms,
only trusted parties—the AuthNS operator or its upstream
providers—have such privileges. In addition, if the insider
can only manipulate data at a single anycast site, resolvers
could switch to other (non-compromised) sites.

5.8. Prototype and Performance

We implemented a prototype of our algorithm to test
its feasibility. The prototype is written in Python and uses
nfdump [38] for parsing the NetFlow data. The prototype
is available with our other source code, see Section 8.

We ran the prototype on different NetFlow data and
measured its runtime performance. Based on three sites,
picked from small to large, we show how the performance
scales with data size and the number of input files. Each
NetFlow file contains the data for one hour. Table 5 shows
the runtime for different training windows (Wtrain) and
data sizes. The runtime scales well with the data size
and the number of input files as long as there are enough
CPU cores available. A problem arises when the individual
NetFlow files grow too large, as they cannot be processed
in parallel anymore. This is the main reason why the large
site runs 7.7× to 9.4× slower than the small site.

4. Recall that our threat model assumes that AuthNS operators can
enforce TCP to render spoofing attempts useless.

TABLE 5: Performance of our prototype for three sites,
ranging from small to large data volume.

Value Site Size Wtrain = 1 3 6 12 24

Data
in MB

small 4.4 13.3 25.0 41.9 89.1
medium 9.5 26.6 50.4 115.5 273.2
large 31.4 90.4 170.6 379.2 811.9

Mean
Time
in s

small 6.6 7.0 7.4 8.3 10.8
medium 15.8 16.4 17.9 24.2 41.3
large 51.5 53.9 58.1 76.4 102.1

TABLE 6: Comparison of different anti-DDoS solutions.
A 3indicates a good value for the criteria, and parentheses
show that it might not apply in all situations.

Our method Reverse Proxy Managed DNS

App.-Layer Flood 3 (7) (3)
Vol. Attack 7 (3) (3)
Privacy 3 (7) (7)
Latency 3 l l

5.9. Comparison with anti-DDoS Vendors

Our proposed system allows the AuthNS operator to
defend against the attack itself (possibly with the help
of upstreams). Commercial anti-DDoS services also aim
to protect AuthNSes against DDoS attacks. Their general
mode of operations falls into two categories: reverse proxy
and managed DNS. We compare these third-party services
to our method in the following, regarding their effective-
ness and privacy—as summarized in Table 6.

Reverse Proxy: The anti-DDoS vendor can act as a
reverse proxy, accepting traffic and forwarding valid DNS
queries to the AuthNS operator. Technically, caching re-
verse proxies sit between the client (resolver) and AuthNS
such that clients no longer query the AuthNS themselves.
In principle, reverse proxies thereby significantly reduce
the AuthNSes’s load in that they only forward uncached
queries. Assuming that the proxies have better network
connectivity than the AuthNS operators, they also pro-
vide decent protection against volumetric attacks [29],
[30], [42]—only valid DNS requests are forwarded to the
AuthNS operator. Having said this, reverse proxies only
provide limited defense against application-layer attacks
that bust the cache. Given tens of millions of DNS records
to choose from, plus non-cacheable queries to non-existing
domains, attackers can evade the caches and flood the
AuthNS infrastructure. There is a clear privacy downside,
as a third party learns about the DNS queries. Finally,
reverse proxies may not be able to retain the latency of
the original AuthNS setup, especially if they are further
away from the clients or still have to forward queries to the
AuthNS. While there are opposite cases in which clients
get cached responses faster, TLD operators that want to
retain SLAs have to choose reverse proxy locations wisely.

Managed DNS: In the managed DNS mode, the anti-
DDoS vendor directly answers any query with their copy
of the AuthNS’s zone file. The anti-DDoS vendor thus op-
erates like an AuthNS operator. The big difference is that
an anti-DDoS vendor operates a shared infrastructure for
many customers. This results in a different financial model
and likely larger infrastructure. If so, the managed DNS
provider may even be able to protect against volumetric
attacks. For application-layer attacks, the vendor will ul-

timately be similarly vulnerable as the AuthNS operator
is for larger attacks that exceed its over-provisioning—
unless protected by our defense. The privacy impact is
similar to the reverse proxy, as a third party learns all
DNS queries; even worse, it learns the zone file that may
be deemed sensitive. The latency may change and depends
on the anycast setup of the managed DNS operator. Again,
to retain latency-based SLA guarantees, the anycast setup
would have to be similar (or superior) to the original one.

6. Discussion

In this section, we first check whether our proposed
defense aligns with the design goals. We then discuss the
relevance of our work in light of other defenses. Finally,
we iterate threats of validity in our evaluation.

6.1. Reflection on Design Goals

We first discuss how our proposed defense meets the
design goals as outlined in Section 4.1. By design, our
proposed content-agnostic (G4) anomaly detection can
be applied by upstream providers (G3) and does not
require client support (G2). The low-pass filter retains
compatibility with low-volume resolvers (G8). Our pro-
posed anomaly detection defense is easy to use (G7); it
just requires NetFlow data (or similar statistics) to learn
statistical profiles of past resolver behavior. There are no
extra costs (G7); all standard routing/switching hardware
nowadays offers flow monitoring, and storage costs for
up to 72 hours of NetFlow data are negligible. Despite
this simplicity, the method filters sufficient attack traffic to
avoid packet loss at AuthNSes (G1). To further underline
this, the LPF threshold can even be lowered to reduce the
load in case of overloads. This even holds if attackers can
poison the allowlist with thousands of entries, showing a
high degree of resilience against the major evasion angle
(G5). At the same time, there are few false positives (G6),
especially when compared to the alternatives defenses
(e.g., null routing) or no defense at all (high packet loss→
high FPR). To conclude, the proposed methodology fully
fulfills the design goals and thereby represents a vital last-
resort defense for TLD operators.

6.2. Limitations

Our proposed methodology still has a few limitations,
as discussed in the following.

Catchment Changes: Some mitigations, like changes
in the BGP announcements, will influence the catchment
area of the sites. This affects how well the computed
allowlist matches and might lead to higher false positives.
Computing a single shared allowlist across all sites allevi-
ates that, as it guarantees that each resolver is allowlisted
everywhere, but it is less specific.

Millions of attack sources: Very large botnets are
problematic, as they can overwhelm the AuthNS with their
sheer volume, as each network is allowed to send LPF
amount of traffic. This can add up to significant amounts
of traffic. It can be partially counteracted by decreasing
the value for LPF, but this increases the number of false
positives. The reduction of LPF will affect the benign
resolvers equally, thus changes have to be made carefully.

Spoofing-capable attackers: IP address spoofing al-
lows the attacker to mimic arbitrary sources. This not
only allows mimicking millions of attack sources. It also
offers the chance to DoS a specific set of victim resolvers.
When our defense is enabled, attackers can spoof victim
IP addresses to consume their traffic allowance. Detecting
spoofing is simple when many IP addresses are affected
but can be challenging when only a few are. In either case,
the AuthNS operator can enable spoofing countermeasures
(see Section 3.1), which effectively prevents these attacks.

Coarse-grained filters: Network aggregation may
merge traffic from both benign and malicious sources
into a single mixed entity. The attribution of network
traffic is still correct. But both sources now compete for
the same traffic allowance. If attackers send orders of
magnitude more traffic, this prevents the benign resolver
from accessing any AuthNS. This requires the attacker to
have an IP address close to the victim, which is possible in
the cloud or shared hosting environments, but impossible
if the resolver has a dedicated IP address. The amount
of aggregation is another contributing factor and can be
reduced, i.e., longer prefixes, when this problem occurs.
Longer prefixes result in more detailed attribution but
increase the size of the allowlist and computation cost.

6.3. Relevance of Our Work

So far, we assumed that we have to use upstream filters
to avoid overloaded AuthNSes (i.e., packet loss) at all
costs. We see our proposed defense as the last level of
defense if all other DDoS countermeasures fail. Again, for
volumetric DDoS attacks, upstream content filters work
well. Also, small application-layer attacks that overload
a single anycast location can only be mitigated by traffic
rerouting, as suggested by Rizvi et al. [41].

However, when DDoS attacks overload the entire
anycast infrastructure, the countermeasures mentioned
before are of no help. Indeed, this is a situation that
will likely occur in our modeled attacks (Section 5.3).
If a standard botnet attacks a large TLD, the total attack
bandwidth (or query volume) exceeds the resources of the
entire anycast infrastructure by far. This underlines that we
indeed need additional countermeasures like ours that are
agnostic to the content and filter attack traffic upstream.

We acknowledge that, for ethical reasons, we have not
tested the consequences of successful DoS attacks against
TLDs. We consider an attack successful if the overall
traffic exceeds typical query capacities of AuthNSes. Es-
pecially short-term attacks may not have as severe conse-
quences, as caching and even stale records (Section 3.2)
provide short-term mitigation. In general, it is hard to
model the clients’ tolerance to resolution failures. Given
many layers of caching and uncertainty, determining the
final impact of DDoS attacks is difficult. Having said
this, past attacks have illustrated that there are negative
attack implications. First, Moura et al. [36] report on
two DDoS attacks against the DNS root servers between
2015-11-30 and 2015-12-01. The DNS root servers are
separated into multiple anycast clouds, containing a couple
to hundreds of servers each. Multiple anycast clouds failed
under a load of up to 5Mpps. End-user errors were
reported, even though multiple anycast clouds were still

operational. Second, Sommese et al. [45] report on fur-
ther DDoS activity against various DNS servers between
2020-11 and 2022-03. They achieve greater visibility by
combining DoS activity from a large darknet with active
DNS measurements of the OpenINTEL platform, giving
them information about resolution times and failures. Most
successful attacks are against smaller DNS providers,
often without anycast deployments. Yet, larger providers
with anycast infrastructures, such as Hetzner, Apple, or
GoDaddy, are also affected. From these reports, we learn
that successful DDoS attacks against DNS infrastructure
happen and represent an open research problem. We hope
that our work can help to mitigate future attacks.

6.4. Threats to Validity

In our evaluation, we tried to get as close as possible
to a realistic attack by using real-world background traffic
of a TLD and monitoring potential attack sources. While
we believe these results are representative, there are a few
factors that may influence the preciseness of the results.
We iterate potential threats to validity in the following.

Requests per lookup: We modeled that each client
lookup towards an open resolver creates a single query
towards the AuthNS. In practice, resolvers may send
multiple queries even during normal operations. For ex-
ample, resolvers often issue the same query to multiple
AuthNSes, e.g., to both an IPv4 and IPv6 server. During
a successful DDoS attack, resolvers may even amplify the
attack, as they do not receive responses to their queries.
The default resolver behavior then is to issue the same
query again [37]. Such repeated queries are an extra
load the attacked server needs to handle. After multiple
unsuccessful queries, the resolver might deem the AuthNS
unresponsive and switch to another IP address or AuthNS.
This, in turn, alleviates the load on the attacked server
but may cause cascading failures at other AuthNSes. All
these effects—the number of re-transmissions and how
resolvers switch between name servers—are impossible
to determine without performing an actual attack, as it
depends on the software, configuration, and the specific
connection to all AuthNSes. Therefore, we excluded this
effect from our analysis. However, this underlines once
more that we have to shield AuthNS infrastructures early
on, not to run into these amplification issues.

Anycast cloud sizes: In this paper, we only looked at
medium-sized anycast clouds. Other anycast deployments
range from two locations to hundreds of locations for a
single cloud, which influences DDoS resilience. Smaller
clouds are more vulnerable, as they have less redundancy
and fewer overall resources for traffic processing. They
also have fewer catchment areas, allowing an attacker to
more efficiently target a specific location or deploy attack-
ing nodes in all catchment areas. Clouds with hundreds of
locations are more capable of swallowing an attack and
attract more benign traffic.

Another observation is that not all locations within
an anycast setup receive the same traffic share. Resolvers
prefer locations with low latency. Anycast locations with
beneficial routing (e.g., close to exchange points or back-
bone networks) will attract traffic from many networks.
Other locations will be located further from the Tier-1
providers, and thus their route announcements will have

limited reach. Given the larger catchment, this imbalance
makes some locations easier to attack. In contrast, other
locations are “protected” since the attacker will struggle to
assemble enough attack bandwidth in their catchment ar-
eas. Furthermore, such highly-imbalanced anycast setups
have the potential for a cascading failure. If a high-volume
location is overwhelmed and traffic switches to a relatively
smaller location, that location will be overloaded.

Having said this, the mid-sized anycast clouds we
studied provide a good balance and are representative of
anycast setups of several other large ccTLD operators.
Furthermore, the defenses we studied work independently
of the concrete anycast setup.

Attack sources: Our evaluation consistently models
the attacker using all available traffic sources. Given our
filtering algorithm, this is the most beneficial choice for
the attacker, as any IP network can contribute attack traffic
up to the LPF. In reality, the attacker might not use all
available traffic sources, e.g., as nodes are in the wrong
catchment area or nodes provide less bandwidth than other
sources. This is not a concern for our proposed filtering,
as any deviation benefits the defenders, and thus we report
worst-case results in the paper.

Alternatively, to using subsets of attack sources, at-
tackers may find larger attacking sets than the ones we
studied. We monitored reasonably large botnets that con-
tain up to ≈ 100k attack networks. Larger botnets existed
in the past (e.g., Conficker), and would demand stricter
low-pass filters to protect DNS infrastructures.

Preconfigured resolvers: ISPs operate DNS resolvers
which are only accessible to their customers. A botnet
could leverage these resolvers if they have compromised
hosts in the ISP’s network. These preconfigured resolvers
are shared with many benign users, more so maybe than
many open resolvers. From the AuthNS perspective, mis-
use of the preconfigured resolvers is harder to detect
and mitigate since benign and attack traffic is blended
together. Consequently, we risk blocking legitimate traffic.
Having said this, ISPs can rate limit their clients to prevent
massive abuse and mitigate the resulting damage to their
resolvers’ reputations. We cannot measure the population
of ISP-provided resolvers due to a lack of access to these
networks. Therefore, we do not report on the effects of
abusing such resolvers in attacks.

7. Related Work

Work about DNS-based DDoS attacks is split mainly
into two broad categories: 1) classifiers and strategies to
detect or evade attacks and 2) describing novel attacks.

7.1. DDoS Defenses

Moura et al. [37] investigate how resolvers and clients
behave during attacks on AuthNSes. They set up an
AuthNS infrastructure and drop packets to simulate an
attack. They measure the success rate, latency, and more of
clients querying the “attacked” zone. The paper explains
how an AuthNS DoS will affect the larger ecosystem and
highlights the importance of defenses for AuthNSes. We
thus iterate over DNS-specific defenses in the following.

Davis et al. [13] propose a new mitigation strategy
based on reverse DNS entries. An IP address space owner

can mark what kind of DNS traffic is expected to originate
from the address space, e.g., specifying DNS Cookie sup-
port or noting that no DNS traffic is expected. AuthNSes
can use this information to filter out traffic originating
from a spoofed source and not respond. A high adoption
rate in both the reverse DNS space and among all DNS
servers could reduce reflective DNS attacks. This comes
with a costly downside for AuthNSes since now they must
perform DNS queries, something usually only performed
by clients and resolvers. This adds network, processing,
and memory overheads for little protection of the AuthNS
itself, but rather for the rest of the internet.

Alonso et al. [5] suggest a more passive methodology
to detect simple DNS floods. They leverage the “social
structure” of resolvers, i.e., the relationship between re-
solvers and the queried domains. Their basic idea is to
search for query patterns that increase or change the
set of domains being queried, which happens, e.g., for
random subdomain attacks. Unfortunately, their work is
thus not content-agnostic, leaving leeway for trivial eva-
sion techniques for attacks against TLDs. For example,
in our setting, attackers can choose from querying mil-
lions of existing domains and could even mimic website
popularity rankings to model query likelihoods for each
domain. Moreover, their methodology requires a costly
query analysis and subgraph detection (approximating the
NP-complete problem of bipartite subgraph search).

Rizvi et al. [41] propose an active routing-based de-
fense for attacks that overload just single AuthNS in a
larger anycast setup. To mitigate these local attacks, they
use BGP to steer traffic between multiple anycast servers.
Anycast catchment changes as a result of altered BGP
announcements are often unpredictable. As such, the paper
describes the creation of a playbook of applicable BGP
alterations and the likely outcome. During an attack, the
alteration which best matches the current situation can
be picked, bringing all servers back to capacity. This
defense is elegant and free of false positives, yet can only
be applied if the overall anycast network has sufficient
capacities to defend against an attack. Our work applies
to the exact opposite situation, i.e., when massive attacks
overload the entire anycast network. In these situations,
shifting traffic from one location to another would only
trigger cascading collateral damage.

Finally, Trejo et al. [51] create DNS-ADVP, a nearest-
neighbor-based system to detect the presence of amplifica-
tion attacks against DNS infrastructures. First, the authors
create visual classifiers to inspect and alert on abnormal
traffic conditions. The visual classifiers are based on the
traffic fraction of the largest source compared to the over-
all volume and the correlation of requested domain names
between different resolvers. They then represent the DNS
traffic as feature vectors, each vector capturing the overall
traffic statistics of a second time window. The resulting
system can, with 78% accuracy, detect the presence of
attacks against DNS. Having said this, their work has
several limitations. First, the proposed defense is limited
to detecting that attacks occur but cannot pinpoint the
attack sources. It can complement our work in that it can
be used to activate our defense. Second, the features are
not content-agnostic, risking that targeted attacks bypass
the methodology by adapting their query patterns.

7.2. DNS Attacks

Besides the ongoing efforts on exploring attack coun-
termeasures, other related work documents new DNS at-
tack strategies. While not directly related to our paper, the
strategies listed below describe attacks against an AuthNS,
for which our anomaly detection applies.

The tsuNAME attack disclosed by Moura et al. [35]
describes a software bug, where a pair of dependent
records can lead to an infinite loop. Two zones in different
TLDs are set up to host their AuthNSes in the other zone.
This causes a cyclic dependency where, looking up the
AuthNS of the first zone, the second zone needs to be
resolved, but that requires finding the AuthNS in the first
zone, leading to a situation where neither zone can be
resolved successfully. A bug in the software implementa-
tion Google used did not detect this situation and instead
kept sending requests to both domains. The requests were
not rate limited, causing flooding of the TLD AuthNSes.
While this specific attack is caused by a combination of
bad zone files, i.e., cyclic dependencies, and a software
bug, it shows that even benign services can sometimes
misbehave. Any defense strategy should be careful in
generally allowlisting specific sources and, as we propose,
better apply limits even to allowlisted sources.

The NXNSAttack discovered by Afek et al. [2] used
application-layer amplification enabled by resolvers to
flood AuthNSes with over 500× the original bandwidth.
The attack is enabled by resolvers, which are too gener-
ous in following DNS delegations, resulting in multiple
identical queries. A DNS delegation is performed with a
NS record, which points to a domain where the A and
AAAA records for the AuthNS IP addresses are stored.
Each delegation can have multiple NS records, and each
domain has multiple A/AAAA records. All A/AAAA records
can point to the same server. Resolvers were using all
records simultaneously and sending hundreds of queries.
Limiting the number of simultaneously followed delega-
tions fixes the attack. This attack shows again how benign
resolvers can suddenly turn bad. Our defense can cope
with this attack; we would penalize “unpatched” resolvers
by dropping their (partially benign) lookups. As soon as
they mitigate their bogus behavior, they fall below the
LPF or their prior allowlist threshold.

8. Conclusion

For many years, the DNS operators community has
tacitly assumed that our core DNS infrastructure is suf-
ficiently resilient against large-scale DDoS attacks. We
showed that this might be a false assumption in the pres-
ence of strong adversaries. Motivated by this observation,
we proposed a two-layer anomaly detection defense allow-
ing upstream providers to effectively mitigate application-
layer attacks against DNS. The proposed defense finds
a sweet spot between collateral damage (false positives)
and the remaining load on the critical DNS infrastruc-
tures (measured in requests per second). This provides a
big step forward for DNS operators, especially if traffic
engineering is no longer effective. Should an application-
layer attack arise for which content-based filters fail, DNS
operators now have a better alternative to extreme(ly bad)
measures such as null routing.

Data Availability

Given the sensitivity of the DNS name lookups, the
ccTLD asked for an NDA prior to our cooperation. We
nevertheless thought about the possibility of releasing the
dataset used throughout this work. In particular, we oper-
ate on traffic statistics and aggregated networks only Sec-
tion 5.1—a seemingly curated dataset. However, according
to national data protection law, sharing this data is not
possible, as it would violate the well-defined reasons
under which this data may be collected. In particular,
the (sole) reason why the cooperating ccTLD operator
may record the data in the first place is the possibility
of protecting the corresponding DNS infrastructures. This
reason no longer applies when data is shared for other
purposes.

To ease reproducibility, we have released the code
that we used to (i) ingest NetFlow data into a database,
(ii) build the respective allowlists, and (iii) evaluate the
methodology based on given datasets. We have a prototype
implementation for the allowlist creation, which converts
a NetFlow file into an allowlist. The data sets used to
model the Mirai, Sality and Open Resolver populates are
included.

The code and data are available online at https://github.
com/cispa/DNS-Applayer-DDoS-Protection/.

Acknowledgments

We sincerely thank our partnering ccTLD operator,
without whom this research would not have been possible.
Our sincere thanks further belongs to the anonymous re-
viewers for their valuable feedback and suggestions which
helped to improve the paper. Furthermore, we thank the
Saarbrücken Graduate School of Computer Science for
their funding and support.

References

[1] Donald E. Eastlake 3rd and Mark P. Andrews. Domain Name
System (DNS) Cookies. RFC 7873, May 2016.

[2] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir. NXNSAt-
tack: recursive DNS inefficiencies and vulnerabilities. In 29th
USENIX Security Symposium (USENIX Security 20), pages 631–
648. USENIX Association, August 2020.

[3] afnic. Statistiques. https://www.afnic.fr/observatoire-ressources/
statistiques/, January 2022.

[4] Paul Aitken, Benoı̂t Claise, and Brian Trammell. Specification of
the IP Flow Information Export (IPFIX) Protocol for the Exchange
of Flow Information. RFC 7011, September 2013.

[5] Roberto Alonso, Raúl Monroy, and Luis A. Trejo. Mining IP to
domain name interactions to detect DNS flood attacks on recursive
DNS servers. Sensors, 2016.

[6] BIND open source DNS server. https://www.isc.org/bind/.

[7] Jonas Bushart and Christian Rossow. DNS unchained: Amplified
application-layer DoS attacks against DNS authoritatives. In Re-
search in Attacks, Intrusions, and Defenses - 21st International
Symposium, 2018.

[8] Benoı̂t Claise. Cisco Systems NetFlow Services Export Version 9.
RFC 3954, October 2004.

[9] Benoı̂t Claise and Brian Trammell. Information Model for IP Flow
Information Export (IPFIX). RFC 7012, September 2013.

[10] Secure64 Software Corporation. Water torture: A slow drip DNS
DDoS attack, February 2014. https://secure64.com/water-torture-
slow-drip-dns-ddos-attack/.

[11] Traffic dashboard. https://stats.nic.cz/dashboard/en/Traffic.html,
February 2023.

[12] Amir Dahan. Business as usual for Azure customers despite
2.4 Tbps DDoS attack. https://azure.microsoft.com/en-
us/blog/business-as-usual-for-azure-customers-despite-24-tbps-
ddos-attack/, October 2021.

[13] Jacob Davis and Casey T. Deccio. Advertising DNS protocol use
to mitigate DDoS attacks. In 29th IEEE International Conference
on Network Protocols, 2021.

[14] denic. Domain statistics of .de. https://www.denic.de/en/know-
how/statistics/monthly-statistics-of-de/, January 2022.

[15] John Dickinson, Sara Dickinson, Ray Bellis, Allison Mankin,
and Duane Wessels. DNS Transport over TCP - Implementation
Requirements. RFC 7766, March 2016.

[16] DNS Privacy Project. Follow-up performance measurements (q4
2108). https://dnsprivacy.org/performance measurements/follow-
up performance measurements q4 2108/, 10 2018.

[17] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. ZMap:
fast internet-wide scanning and its security applications. In Pro-
ceedings of the 22th USENIX Security Symposium, 2013.

[18] Kazunori Fujiwara, Akira Kato, and Warren ”Ace” Kumari. Ag-
gressive Use of DNSSEC-Validated Cache. RFC 8198, July 2017.

[19] R. (Miek) Gieben and Matthijs Mekking. Authenticated Denial of
Existence in the DNS. RFC 7129, February 2014.

[20] Suzanne Goldlust. Using the response rate limiting feature. https:
//kb.isc.org/docs/aa-00994, September 2018.

[21] Suzanne Goldlust and Cathy Almond. Recursive client rate limit-
ing. https://kb.isc.org/docs/aa-01304, October 2021.

[22] Suzanne Goldlust and Cathy Almond. Recursive client rate limiting
– FAQs. https://kb.isc.org/docs/aa-01316, October 2021.

[23] Scott Hilton. Dyn analysis summary of friday october 21 attack.
https://web.archive.org/web/20180224030354/https://dyn.com/
blog/dyn-analysis-summary-of-friday-october-21-attack/, October
2016.

[24] Knot DNS. Benchmark. https://www.knot-dns.cz/benchmark/,
January 2022.

[25] Knot DNS. Old benchmark. https://www.knot-dns.cz/benchmark-
old/, January 2022.

[26] Knot Resolver. https://www.knot-resolver.cz/.

[27] Lukas Krämer, Johannes Krupp, Daisuke Makita, Tomomi Nishi-
zoe, Takashi Koide, Katsunari Yoshioka, and Christian Rossow.
AmpPot: monitoring and defending against amplification DDoS
attacks. In Research in Attacks, Intrusions, and Defenses - 18th
International Symposium, 2015.

[28] Christian Kreibich, Andrew Warfield, Jon Crowcroft, Steven Hand,
and Ian Pratt. Using packet symmetry to curtail malicious traffic.
ACM Hotnets-IV, 200, 2005.

[29] Johannes Krupp, Michael Backes, and Christian Rossow. Identi-
fying the scanners and attack infrastructure behind amplification
DDoS attacks. In Proceedings of the 2016 ACM Conference on
Computer and Communications Security. ACM, 2016.

[30] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten
Holz. Exit from hell? reducing the impact of amplification DDoS
attacks. In Proceedings of the 23rd USENIX Security Symposium,
2014.

[31] David C Lawrence, Warren ”Ace” Kumari, and Puneet Sood.
Serving Stale Data to Improve DNS Resiliency. RFC 8767, March
2020.

[32] Christoph Loibl, Susan Hares, Robert Raszuk, Danny R. McPher-
son, and Martin Bacher. Dissemination of Flow Specification
Rules. RFC 8955, December 2020.

[33] Christoph Loibl, Robert Raszuk, and Susan Hares. Dissemination
of Flow Specification Rules for IPv6. RFC 8956, December 2020.

[34] Measurement Lab. The M-Lab NDT data set. https://
measurementlab.net/tests/ndt, (2021-01-01 – 2021-01-31).

https://github.com/cispa/DNS-Applayer-DDoS-Protection/
https://github.com/cispa/DNS-Applayer-DDoS-Protection/
https://www.afnic.fr/observatoire-ressources/statistiques/
https://www.afnic.fr/observatoire-ressources/statistiques/
https://www.isc.org/bind/
https://secure64.com/water-torture-slow-drip-dns-ddos-attack/
https://secure64.com/water-torture-slow-drip-dns-ddos-attack/
https://stats.nic.cz/dashboard/en/Traffic.html
https://azure.microsoft.com/en-us/blog/business-as-usual-for-azure-customers-despite-24-tbps-ddos-attack/
https://azure.microsoft.com/en-us/blog/business-as-usual-for-azure-customers-despite-24-tbps-ddos-attack/
https://azure.microsoft.com/en-us/blog/business-as-usual-for-azure-customers-despite-24-tbps-ddos-attack/
https://www.denic.de/en/know-how/statistics/monthly-statistics-of-de/
https://www.denic.de/en/know-how/statistics/monthly-statistics-of-de/
https://dnsprivacy.org/performance_measurements/follow-up_performance_measurements_q4_2108/
https://dnsprivacy.org/performance_measurements/follow-up_performance_measurements_q4_2108/
https://kb.isc.org/docs/aa-00994
https://kb.isc.org/docs/aa-00994
https://kb.isc.org/docs/aa-01304
https://kb.isc.org/docs/aa-01316
https://web.archive.org/web/20180224030354/https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://web.archive.org/web/20180224030354/https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.knot-dns.cz/benchmark/
https://www.knot-dns.cz/benchmark-old/
https://www.knot-dns.cz/benchmark-old/
https://www.knot-resolver.cz/
https://measurementlab.net/tests/ndt
https://measurementlab.net/tests/ndt

[35] Giovane C. M. Moura, Sebastian Castro, John Heidemann, and
Wes Hardaker. tsuNAME: public disclosure and security advisory.
Technical report, SIDN Labs, InternetNZ and USC/ISI, May 2021.

[36] Giovane C. M. Moura, Ricardo de Oliveira Schmidt, John S.
Heidemann, Wouter B. de Vries, Moritz Müller, Lan Wei, and
Cristian Hesselman. Anycast vs. DDoS: Evaluating the november
2015 root DNS event. In Proceedings of the 2016 ACM on Internet
Measurement Conference, 2016.

[37] Giovane C. M. Moura, John S. Heidemann, Moritz Müller, Ricardo
de Oliveira Schmidt, and Marco Davids. When the dike breaks:
Dissecting DNS defenses during DDoS. In Proceedings of the
Internet Measurement Conference 2018, 2018.

[38] nfdump. https://github.com/phaag/nfdump/, February 2023.

[39] Nominet. .uk register statistics – 2020. https://www.nominet.uk/
news/reports-statistics/uk-register-statistics-2020/, January 2022.

[40] PowerDNS Recursor. https://www.powerdns.com/recursor.html.

[41] A. S. M. Rizvi, Leandro M. Bertholdo, João M. Ceron, and John S.
Heidemann. Anycast agility: Network playbooks to fight DDoS.
In 31st USENIX Security Symposium, 2022.

[42] Christian Rossow. Amplification hell: Revisiting network protocols
for DDoS abuse. In 21st Annual Network and Distributed System
Security Symposium, 2014.

[43] SIDN LABS. .nl statistieken. https://stats.sidnlabs.nl/nl/
registration.html, January 2022.

[44] Raffaele Sommese, Gautam Akiwate, Mattijs Jonker, Giovane
C. M. Moura, Marco Davids, Roland van Rijswijk-Deij, Geof-
frey M. Voelker, Stefan Savage, Kimberly C. Claffy, and Anna
Sperotto. Characterization of anycast adoption in the DNS au-
thoritative infrastructure. In 5th Network Traffic Measurement and
Analysis Conference, 2021.

[45] Raffaele Sommese, kc claffy, Roland van Rijswijk-Deij, Arnab
Chattopadhyay, Alberto Dainotti, Anna Sperotto, and Mattijs
Jonker. Investigating the impact of DDoS attacks on DNS infras-
tructure. In Proceedings of the 22nd ACM Internet Measurement
Conference, 2022.

[46] Most popular top-level domains worldwide as of june 2022.
https://www.statista.com/statistics/265677/number-of-internet-top-
level-domains-worldwide/, June 2022.

[47] Ondřej Surý, Willem Toorop, Donald E. Eastlake 3rd, and Mark P.
Andrews. Interoperable Domain Name System (DNS) Server
Cookies. RFC 9018, April 2021.

[48] DNS statistics. https://www.nic.ch/statistics/dns/, February 2023.

[49] Yuya Takeuchi, Takuro Yoshida, Ryotaro Kobayashi, Masahiko
Kato, and Hiroyuki Kishimoto. Detection of the DNS water
torture attack by analyzing features of the subdomain name. J.
Inf. Process., 2016.

[50] DNS Implementations. https://dnsinstitute.com/implementations/.

[51] Luis A. Trejo, Victor Ferman, Miguel Angel Medina-Pérez, Fer-
nando Miguel Arredondo Giacinti, Raúl Monroy, and Jose Em-
manuel Ramirez-Marquez. DNS-ADVP: A machine learning
anomaly detection and visual platform to protect top-level domain
name servers against DDoS attacks. IEEE Access, 2019.

[52] Unbound. https://nlnetlabs.nl/projects/unbound/about/.

[53] Olivier van der Toorn, Johannes Krupp, Mattijs Jonker, Roland van
Rijswijk-Deij, Christian Rossow, and Anna Sperotto. ANYway:
Measuring the amplification DDoS potential of domains. In 17th
International Conference on Network and Service Management,
2021.

[54] Bruce Van Nice. Drilling down into DNS DDoS, February
2015. https://www.nanog.org/sites/default/files/nanog63-dnstrack-
vannice-ddos.pdf.

[55] Verisign. Zone files for top-level domains (TLDs).
https://www.verisign.com/en US/channel-resources/domain-
registry-products/zone-file/index.xhtml, January 2022.

[56] Paul Vixie and Vernon Schryver. DNS response rate limiting (DNS
RRL). https://ftp.isc.org/isc/pubs/tn/isc-tn-2012-1.txt, April 2012.

[57] Samuel Weiler and Johan Ihren. Minimally Covering NSEC
Records and DNSSEC On-line Signing. RFC 4470, April 2006.

https://github.com/phaag/nfdump/
https://www.nominet.uk/news/reports-statistics/uk-register-statistics-2020/
https://www.nominet.uk/news/reports-statistics/uk-register-statistics-2020/
https://www.powerdns.com/recursor.html
https://stats.sidnlabs.nl/nl/registration.html
https://stats.sidnlabs.nl/nl/registration.html
https://www.statista.com/statistics/265677/number-of-internet-top-level-domains-worldwide/
https://www.statista.com/statistics/265677/number-of-internet-top-level-domains-worldwide/
https://www.nic.ch/statistics/dns/
https://dnsinstitute.com/implementations/
https://nlnetlabs.nl/projects/unbound/about/
https://www.nanog.org/sites/default/files/nanog63-dnstrack-vannice-ddos.pdf
https://www.nanog.org/sites/default/files/nanog63-dnstrack-vannice-ddos.pdf
https://www.verisign.com/en_US/channel-resources/domain-registry-products/zone-file/index.xhtml
https://www.verisign.com/en_US/channel-resources/domain-registry-products/zone-file/index.xhtml
https://ftp.isc.org/isc/pubs/tn/isc-tn-2012-1.txt

A. Anycast Setup

Country
of TLD

operator

C1 C2 C4C3 C5

Figure 8: Approximate locations of AuthNS instances
(circles colored by cloud), their anycast cloud assignment,
and hypothetical DNS clients (�) using different anycast
clouds (C1-C5). The country of the ccTLD’s origin,
shown as the oval in Europe, contains five locations, re-
maining Europe (pale green) further seven locations, while
South/North America (pale blue) and Asia/Pacific (pale
red) have three locations each. The exemplified clients (�)
have arrows in the colors of the anycast clouds, indicating
how BGP could route them.

B. Sality Results

The Sality results are identical to the presented results
about Mirai-like botnets and open resolver. Figure 9 has
an identical setup to Fig. 5 but contains the visualization
for the Sality botnet.

Figure 9: Effect of the LPF and Wtest parameters on the
FPR and FNs. Each point represents a site’s performance
depending on LPF and Wtest. The graphs depict attackers
using Sality, a Mirai-like botnet, and open resolvers.

C. Prototype Performance

This is an extended graph for the data in Table 5. It
shows the runtime of our prototype based on the training
window (Wtrain) and the NetFlow data size.

Figure 10: Performance of our prototype for three sites,
ranging from small to large data volume. The training
window (Wtrain) ranges from one (left) to 24 hours (right).
The graph shows the mean runtime in seconds (y-axis)
with the observed min/max values and data size (x-axis).

Figure 11: The histogram depicts the number of networks with packet rates and activity times. The x-axis shows in how
many hours the IP network was observed, while the y-axis represents the average packet rate during the active period.
The color shows how common each combination is, from non-existing white, over rare purple, to a common yellow.

D. DNS Client Query Behavior

The heatmap in Fig. 11 shows the most common
combinations of average packet rate in packets per hour
(y-axis in log scale) and the number of hours a network
was active (x-axis; max. 682 hours). The color encodes
how common these combinations are, ranging from purple
(least number of networks) to yellow (high density of
networks).

The graph shows the highest concentration towards
the bottom-left corner. This shows that most networks in
our dataset are only sporadically active and send packets
at low rates. In fact, most IP networks send fewer than
ten packets per hour, yet they contribute less than 7.5%
of the recorded traffic. The IP networks with the highest
traffic rates are located on the right in the graph. This
means that there is a stable set of IP networks, which
are active during the whole observation period, sending
one order of magnitude more traffic than other networks.
These are likely resolver infrastructures of ISPs, cloud
operators, and public DNS offerings since these are always
active and attract large user bases. There are just a few
sporadic high-volume clients, as indicated by the upper
left part of the histogram. These source networks might
become problematic for anomaly detection since they
appear short-term but with significant traffic compared to
other sources.

	Introduction
	Background
	Modern AuthNS Infrastructures
	DDoS Mitigation at the AuthNS

	Problem Statement
	Threat Model
	DNS-Specific Non-solutions

	Methodology
	Design Goals
	Anomaly Filtering
	Upstream Filtering

	Evaluation
	Dataset Description
	Benign Client Behavior Analysis
	Attack Modeling
	Indirect Attack via Open Resolvers
	Direct Attack via Botnet

	Learning Parameters / Accuracy
	Evaluation Metrics
	Parameter Values
	Parameter Optimization
	Results

	Concept Drift
	Evasion
	Insider Threats
	Prototype and Performance
	Comparison with anti-DDoS Vendors

	Discussion
	Reflection on Design Goals
	Limitations
	Relevance of Our Work
	Threats to Validity

	Related Work
	DDoS Defenses
	DNS Attacks

	Conclusion
	References
	 A: Anycast Setup
	 B: Sality Results
	 C: Prototype Performance
	 D: DNS Client Query Behavior

