
ResolFuzz: Differential Fuzzing of DNS Resolvers

Jonas Bushart1 and Christian Rossow1

CISPA Helmholtz Center for Information Security, Germany
{jonas.bushart,rossow}@cispa.de

Abstract. This paper identifies and analyzes vulnerabilities in the DNS
infrastructure, with particular focus on recursive DNS resolvers. We aim
to identify semantic bugs that could lead to incorrect resolver responses,
introducing risks to the internet’s critical infrastructure. To achieve this,
we introduce ResolFuzz, a mutation-based fuzzer to search for semantic
differences across DNS resolver implementations. ResolFuzz combines
differential analysis with a rule-based mechanism to distinguish between
benign differences and potential threats. We evaluate our prototype on
seven resolvers and uncover multiple security vulnerabilities, including
inaccuracies in resolver responses and possible amplification issues in
PowerDNS Recursor’s handling of DNAME Resource Records (RRs). More-
over, we demonstrate the potential for self-sustaining DoS attacks in re-
solved and trust-dns, further underlining the necessity of comprehensive
DNS security. Through these contributions, our research underscores the
potential of differential fuzzing in uncovering DNS vulnerabilities.

1 Introduction

The Domain Name System (DNS) is often explained as the internet’s phone book
since it turns human readable names like esorics2023.org into an IP address. This
analogy greatly simplifies the central role DNS plays on the internet besides
just delivering IP addresses. In fact, DNS defines the singular namespace of the
internet, provides cryptographic material for secure communications, and acts
as a backbone for other services such as anti-spam measures or secure routing.

This makes DNS part of the critical infrastructure. Thus, risks and vulnera-
bilities in DNS are of the highest concern. Recursive resolvers are the centerpiece
of DNS, as they resolve domains for clients, iteratively getting answers from au-
thoritative name servers. By design, resolvers are public or at least semi-public,
exposing them to various threats from malicious clients. Likewise, they inter-
act with potentially malicious authoritative name servers. This complex setting
also complicates the task of testing DNS resolvers, as it requires modeling both,
clients and authoritative name servers. Combined with their central role, this
means DNS servers are a highly prized target for malicious actors. Infiltration
and manipulations of DNS allow far-reaching exploits like preparing for Denial-
of-Service attacks, intercepting communication, or forging TLS certificates. Fur-
ther security protocols like DNSSEC or full TLS encryption of services like email
are not widespread enough to catch DNS manipulations.



2 J. Bushart, C. Rossow

DNS Resolver

a.root-servers.net.

a.gtld-servers.net.

a.iana-servers.net.Client

net?

example.net?

www.example.net.?

Fig. 1. Basic DNS resolution process. The client sends a query to the resolver, which
then recursively resolves the query by interacting with multiple AuthNSes.

In this paper, our primary goal is to identify and analyze semantic bugs and
gaps in the DNS resolver implementations. Such bugs could allow an attacker
to get a resolver to return wrong answers. With this work, we want to support
developers by highlighting problems earlier in the development process, as they
hint at bugs or problems with the specification. To this end, we developed Resol-
Fuzz, a fuzzer specifically designed for DNS and implementing differential testing
mechanisms, allowing us to test thousands of scenarios. We build a rule-based
mechanism to identify common and benign differences, such as random values,
underspecified behavior, or feature differences.

In the course of our research, we have uncovered a multitude of critical is-
sues. These range from cases where the DNS resolver returned incorrect values,
to more complex problems like traffic looping bugs and potential amplification
issues. These findings underscore the importance of our differential fuzzing ap-
proach in identifying and addressing vulnerabilities in the DNS infrastructure.

In summary, our paper presents the following contributions:

1. We create a fuzzer for recursive DNS resolvers to uncover vulnerabilities.
2. We build a differential analysis framework for investigating DNS outputs.

This includes rules to separate common benign differences from other sources.
3. We have discovered multiple new bugs in popular open-source resolvers.

2 Methodology

In this section, we describe our methodology for finding semantic differences
between DNS resolvers. Before we can dig into the technical details, we first
need to provide a bit of background on the DNS protocol and the functionality
of a DNS resolver. With that in mind, we can lay out our goals and the challenges
we face. Lastly, we provide the technical details of ResolFuzz, the infrastructure
choices we made, and describe the input generation and output analysis.

2.1 Threat Model

Recursive resolvers sit at a very precarious place on the internet, as shown in
Fig. 1. They receive queries from client and answer them from their cache. If the
information is missing, they traverse the DNS hierarchy to find the answer from
an AuthNS (right). Many resolvers are exposed to the whole internet and have
to talk to many untrusted AuthNSes, indicated by the blue clouds. This opens
them up to attacks from clients, AuthNSes, or combined attacks.



ResolFuzz: Differential Fuzzing of DNS Resolvers 3

For testing the behavior of resolvers, we need to assume that all network
communication is potentially malicious. We assume an attacker can send arbi-
trary queries to the resolver and has control over one or more AuthNSes. While
this assumption is trivially fulfilled for public resolvers, it even holds for private
resolvers. Server-side requests in HTTP servers, like fetching link previews, or
checking email authentication information in SMTP servers allow users to send
queries to specific domains, although with less control over the query.

Creating different resolver states is trivial if the attacker is allowed to send
different data to the resolvers. For a fair analysis, we must restrict the scenario
such that all resolvers receive the same logical data. Some variation must be
allowed, as DNS messages are not fully deterministic since they contain random
values and have no canonical encoding.

2.2 Goals

We aim to develop a semi-automated approach for finding and evaluating se-
mantic differences between DNS resolvers. We envision two use cases: i) Finding
semantic bugs in DNS resolvers, which lead to differences, such that two DNS
clients no longer agree on the same answer. In the worst case, this is a cache poi-
soning vulnerability, which can, e.g., lead to a Certificate Authority that wrongly
issues a domain-validated certificate. ii) Our system can be used during the de-
velopment of DNS resolvers, either to ensure a new resolver is compatible with
the existing ecosystem or to check how a new RFC is implemented.

The system should be scalable to many resolvers and be easy to use, thus
it should work with minimal domain-specific knowledge from the human user.
This allows it to be run by developers and protocol designers to check their
implementations. Integrating a resolver should be free of code modifications or
complex adoption necessary by some fuzzing systems.

We do not aim for bugs in the network packet parsing code. Fuzzing on that
level will not yield many interesting results in the DNS behavior, since most
packets will be dropped early. Bugs in the parsers can be found better with
fuzz harnesses for the parsers. Therefore, we only create syntactically valid DNS
packets, i.e., following the size and allowed values of the fields.

2.3 Challenges

DNS is a complex protocol. Over 300 IETF RFCs [3,21] specify different aspects
of it, and over 100 of them are relevant to resolver implementations [4,15]. This
provides a lot of potential for implementation differences and bugs. Automati-
cally exploring such semantic differences is challenging for several reasons.

State: A DNS resolver is inherently stateful. Resolvers cache answers, meta-
data about answers, and information about AuthNSes. Over time the same query
can result in different answers. Even at the same time, the same query from dif-
ferent clients can result in different answers, since the client IP address can be
part of the cache key with Extended DNS (EDNS) Client Subnet (RFC 7871 [5]).



4 J. Bushart, C. Rossow

 ResolFuzz

 Coordinator

Mutate

MutateInput

Population

Gather

Differential

Analysis

Categorize

Differences

Score

Results

Write results

to filesystem

 Container

Unbound

ns-root.ns.

ns-ns.ns.

ns-0000.ns.

ns-0001.ns.

 Container

BIND9

ns-root.ns.

ns-ns.ns.

ns-0000.ns.

ns-0001.ns.

Fig. 2. Overview of our ResolFuzz fuzzer. The boxes indicate different components,
where the main component is the Coordinator. The Helper (blue/yellow) runs inside
each container and acts as client and servers. The arrows indicate the dataflow. From a
pool of fuzzing inputs, some are selected and mutated. They are gathered into a larger
set and sent to the resolvers. The yellow parts are controlled by the fuzzing input. The
results are collected and compared. Inputs resulting in differences are written to the
filesystem for later analysis. All new inputs are scored and added to the pool.

Multiple Clients and Servers: The DNS resolvers sit in the middle be-
tween many clients and AuthNSes. Answering a single query can involve multiple
servers, pointing the resolver to the next place to ask. The resolver only handles
untrusted data. Clients can send queries for any domain name, even for attacker-
controlled ones. Our system must be able to represent enough of this complex
interaction to provide a large enough coverage but also to find bugs.

Feedback: A DNS resolver is for the most part a black box. It receives a
query, does some processing, potentially triggering network requests, and returns
an answer. On the protocol level, we only have input-output-based interaction,
with multiple inputs and outputs. But this lacks information about what is
happening inside the resolver, including its state (e.g., cache).

Output Similarity: The human language specification used in RFCs is often
vague and leaves room for interpretation. Later RFCs might clarify or change
the meaning of previous ones. This makes it hard to determine if a difference
is a bug or a valid interpretation of the specification. For example, the wording
around glue records in RFC 1034 [18] has been interpreted differently by different
implementations, requiring further clarification [1].

2.4 Addressing the Challenges

We use differential fuzzing to tackle the aforementioned challenges. In differen-
tial fuzzing, the same fuzzing input is given to multiple implementations, here
resolvers. The fuzzer then compares outputs to report on any differences, which
may indicate bugs. This approach still leaves us with the challenge of classifying
the differences into critical or benign ones, due to the output similarity problem.



ResolFuzz: Differential Fuzzing of DNS Resolvers 5

Unfortunately, there is no reference implementation of a perfect DNS resolver
that we could use as an oracle. Thus, to reason about the identified differences,
we use a combination of heuristics and manual inspection. First, we define rules
that describe classes of benign differences, e.g., deviations in the DNS ID of the
header. We group the remaining differences based on fingerprints. They consist
of the DNS headers of both outputs and a list of all fields that differ between the
two. This cuts down the number of cases that need to be inspected manually.

We restrict the state by only using one client-side query during fuzzing,
with arbitrarily many AuthNS side responses. This brings the state down to a
manageable level but can miss some bugs. For example, the first query caches
the wrong AuthNS for a domain and the answer of the second query is based
on that value. We do inspect the cache of the resolver, after the fuzzing. For
this, we send cache probing queries, i.e., queries with the recursion desired (RD)
bit set to 0. This forces the resolver to answer only from the cache. This cache
snooping also allows us to obtain feedback for fuzzing. But only relying on cache
state and DNS messages as output would be too coarse-grained for a fuzzer,
which performs best if learning about incremental progress. We thus extend the
definition of output and include edge coverage between basic blocks [31].

The fuzzer runs in a fully separated DNS environment with separate DNS
root servers, as shown in the containers in Fig. 2. For the multiple clients and
servers challenge we simulate all AuthNSes. The DNS environment is separated
using a custom Root Hint [12] configuration for all resolvers and only pointing
to AuthNSes on localhost, which is simulated by ResolFuzz.

2.5 Fuzzing Infrastructure

This section describes the architecture of ResolFuzz. A flowchart of our dataflow
is shown in Fig. 2. ResolFuzz consists of multiple components. This is necessary
to achieve scalability in the number of tested resolvers and to keep modifications
on the resolvers minimal. The main component Coordinator is responsible for
input generation, mutation, and output evaluation. A helper component Helper
runs alongside each resolver and provides a simulated DNS ecosystem for the re-
solver and communicates with the Coordinator to get fuzzing inputs and deliver
the outputs back. We describe how the Helper interacts with the resolver and
afterward explain the interaction between the Coordinator and multiple Helpers.

Resolver Isolation: One of our goals is that adding a new resolver should
require minimal adaptions. One way we achieve this is by running the resolver
unmodified, with a normal network stack. However, this requires that we separate
different resolvers from each other since all resolvers listen on the same port. For
this, we use Linux namespaces in the form of containers. The Helper simulates
a custom DNS ecosystem with separate roots and runs in each container.

The Helper also runs the fuzzing inputs against the resolver. Multiple fuzzing
queries can be run sequentially, with separate AuthNSes on different IPs per
query. This helps with the separation of state between multiple fuzzing inputs.

Lastly, the Helper gathers coverage information from the resolvers and com-
municates it to the Coordinator. Each resolver is instrumented with LLVMs



6 J. Bushart, C. Rossow

Sanitizer Coverage [31] pass to gather edge coverage information and only in-
clude the edges between sending a query and receiving a response. All edges
involved in startup and background tasks are excluded.

Container Startup: Spawning a resolver including the Helper in such a
fashion is relatively expensive compared to individual DNS queries. For fast
fuzzing iterations it is therefore necessary to limit the amount of time we wait
for the resolvers to start. Generic network fuzzers like AFLNet [19] come with
a forkserver to speed up the spawning of new processes, but that requires mod-
ifications to the program and is incompatible with threads. We pre-spawn the
containers such that they are ready to receive fuzzing inputs and execute mul-
tiple fuzzing inputs sequentially, thus sharing the startup cost. Unfortunately,
we cannot run them in parallel, as this would interfere with the coverage infor-
mation gathering since coverage information is a global property of the resolver,
and concurrent queries would interfere with each other.

Second, most of the resolver startup is independent of the concrete fuzzing
input. We warm the resolver cache with unrelated DNS queries, such that all
name servers will be cached before fuzzing. Testing the fuzzing inputs now only
requires the Helper to read the inputs, configure the dynamic DNS server, and
start sending the client queries.

Coordinator and Helper Interaction: The Coordinator is responsible
for generating and mutating the fuzzing inputs and output evaluation, as well
as, managing the containers with the Helper. We explain the steps of input
generation and evaluations in more detail in Sections 2.6 and 2.7, respectively.
For now, it is sufficient to know, that input generation generates a batch of
fuzzing inputs, each consisting of a DNS client query and a set of DNS responses.

After the batch is completed for all resolvers, the output results are collected.
The output contains i) edge coverage information between basic blocks in the
form of a hitmap, ii) all DNS queries sent to AuthNSes by the resolver, iii) the
DNS responses provided to these queries, iv) the DNS response sent to the
client, and v) information about the resolver cache state. From these outputs,
we determine which inputs are “interesting”, i.e., cover new code paths or uncover
behavioral differences. More details are in Sections 2.7 and 2.8.

2.6 Input Generation and Mutation

ResolFuzz uses mutation for input generation. By picking specific mutations,
we can ensure that the mutated inputs stay syntactically valid DNS messages.
Having a valid DNS message is important, such that we are fuzzing semantic
bugs and not bugs in the DNS message parsers.

We have a population of inputs that we mutate and the ability to generate
new inputs. In the beginning, our population is empty, and we start with only
newly generated inputs. They are a single DNS query and response pair with
randomized query names, labels, types, classes, and header flags. We always
include some new random entries in a batch to ensure diversity in the population.

The top n inputs in our population with the highest score are mutated by
adding, removing, or modifying the different fields and values of the DNS mes-



ResolFuzz: Differential Fuzzing of DNS Resolvers 7

sages. The score is assigned before adding the input to the population and is
decremented each time the input is used as a base for mutations. It covers infor-
mation about the coverage increase, how many known differences, and unknown
differences were found when the input was last used.

Mutation consists of modifying existing values and where possible adding or
removing values. The typed in-memory representations of DNS messages allow
us to walk over the structure and pick a mutation for each field. The DNS header
has a fixed length, so the only mutations are changing the existing values to new
ones. The different sections can have resource records added or removed. Each
resource record has a domain, type, class, Time-to-Live (TTL), and data. These
can be modified, but we always ensure that the data is still valid for the type.

Modifying domain names requires more care than random modifications to
ensure enough “collisions” are created to trigger proper behavior in the resolvers.
For example, the query name used in the DNS client query should also appear in
one of the DNS responses, as otherwise the resolver likely ignores responses and
we fail to test the core logic of a resolver. We use a small set of labels from which
a domain name can be generated. The inputs use a fixed domain test.fuzz.
during mutation, but the Helper will later replace the labels with unique ones
to separate the inputs. We have two C-string specific mutations, by adding a
zero-byte at the end of the last label, i.e., test.fuzz\0., and adding the zero-
byte but also duplicating the domain name, i.e., test.fuzz\0.test.fuzz.. Two
labels can be merged into a new dot-containing label, i.e., foo and bar can be
merged into foo\.bar. These mutations verify that the resolver treats domain
names as a sequence of labels and not as a string.

Only a small set of RR type and Record Data (RDATA) is generated. While
the RR type is a 16-bit value, most of the values are not assigned, and hence
the creation of valid RDATA for them is impossible. Most RR types are for data
storage, without interacting with the resolver, and only a few should be inter-
preted by the resolver. These include A/AAAA for the IP addresses of AuthNSes
and NS for delegations between AuthNSes, SOA for caching, CNAME/DNAME for
aliases/canonical names, and DNSSEC records when supported (RRSIG, DNSKEY,
DS, NSEC, NSEC3, NSEC3PARAM). We only generate A, AAAA, TXT, CNAME, NS, SRV,
SOA and the special query type (QTYPE) * often called ANY.

2.7 Fuzzing Output and Processing

We now explain the collected data for each input and how we use it to determine
if an input is interesting. The coverage information we gather is edge coverage
given from an instrumented resolver. We compile the resolver using LLVMs Sani-
tizer Coverage Instrumentation [31] and count how often each edge gets executed
during the resolution for a single DNS client query.

For each input we capture the outgoing queries from the resolver, the re-
sponses sent to the DNS client, the cache state afterward, how the dynamic
DNS servers answered, and the coverage information. This gives us all the infor-
mation about what the resolver is doing.



8 J. Bushart, C. Rossow

We use all available data to determine if an input is interesting, i.e., produces
new or different behavior, but the most important information is the client’s
response and the coverage information. The client responses reveal whether two
resolvers behave significantly differently. If different responses are returned two
clients might behave differently. The coverage information is important to allow
for partial progress during fuzzing, by giving a means of identifying new behavior
in a resolver, even if the client response remains unchanged. The cache state is
important too, but harder to interpret, since a difference here does not necessarily
mean a semantic difference. Lastly, the outgoing queries to the dynamic DNS
server have a low value, since comparing them is hard and has many downfalls.
For example, there are many ways in which a resolver can implement Query
Name (QNAME) minimization, such as which query type is used and which
labels are removed. For a conforming DNS server, this does not matter and in
the end, the resolver will come up with the same answer in all cases. But these
differences are a problem for automatic analysis since we have many semantically
equivalent queries with different representations.

The collected data is cleaned and checked for known differences, like random
DNS ID values, to only leave the unknown differences. DNS records in messages
are unordered, but we normalize the representations by sorting them. We also
have further known differences, for example, some resolvers already support ex-
tended DNS errors which will be added to the client response in some cases. We
create rules for identifying these known differences and track them separately, see
Section 3.2. The remaining differences are unknown and of the highest interest.

Unfortunately, the fuzzing is not fully deterministic, so we require a validation
run for any found new differences. Randomness and unwanted interactions can
come from many sources, such as choices the resolver makes, how we batch
multiple inputs together, or the kernel via the network and scheduler. We detect
non-deterministic differences by fuzzing the same input multiple times and only
accepting those results that show the same class of differences each time.

Many differences have an identical root cause and we group them using a
fingerprint to better model that. Our fingerprint consists of all the DNS header
fields in the DNS client response and all the field names that differ between
the two resolvers. For example, we describe the difference in the answer section
of the client response using identifiers like .fuzz_result.fuzzee_response.
answers.0 which has the subfields .name_labels, .dns_class, .rr_type, .ttl,
and .rdata. The .0 refers to the first resource record in the answer section. We
do not use the values here, only the field names, since the values often contain
randomized data and thus would always lead to different fingerprints. The same
problem does not exist for the header values since these are mostly booleans.

2.8 Finding Bugs

Our main idea for finding semantic bugs is using differential fuzzing between
many resolvers. DNS is a complex protocol with a lot of variability and edge
cases. Defining valid behavior in the DNS is difficult as it requires a deep un-
derstanding of the standards and a lot of domain-specific knowledge. Instead,



ResolFuzz: Differential Fuzzing of DNS Resolvers 9

Table 1. Software versions used for the evaluation.

Software Version Language

BIND9 v9.18.0, v9.11.0 C
Deadwood 3.5.0032 C
Knot Resolver 5.5.3 C, Lua
PowerDNS Recursor 4.7.3 C++
resolved 463644c Rust
trust-dns 0b6fefe Rust
Unbound 1.15.0 C

using differential testing, we can automatically leverage this knowledge as the
resolvers are implemented by independent expert groups. Instead of deciding if
every response we see is valid, we now can focus on a much smaller set of cases
where multiple resolvers disagree. Each difference is a case for further manual
analysis as they can indicate implementation or semantic bugs.

During the manual analysis, we also built further rules to describe known dif-
ferences. For example, BIND9 has a strict DNS response validation and discards
the whole message if a single value is invalid, while Unbound will only discard
the single invalid resource record. This causes BIND9 to produce a ServFail
answer while Unbound responds with NoError or NoData depending on the
situation. We go into more detail about this in Table 2.

The effort for manual analysis and writing rules ranges from a couple of
minutes to a few hours. Simple cases, like DNS ID randomization or optional
features like extended DNS error, are easy to spot and describe and have no
follow-on impacts. Other cases, like the BIND9 strict validation, are more com-
plex and require more time to understand and describe, as the root cause can
lead to non-obvious and large differences. Concretely, BIND9 might send more
upstream queries than other resolvers.

ResolFuzz is guided by the score each input receives. The score is composed
of the coverage results per resolver and the differences for each resolver pair,
after validation. New differences score the highest, followed by differences we
deem “interesting”; coverage is only a small contributing factor. New mutations
partially inherit the score of their parent inputs. Finally, if the input popula-
tion already contains many samples producing the same fingerprint, we apply
a penalty to all samples in the population. This is to discourage further muta-
tions based on those samples. This ensures that the input population is diverse
and ResolFuzz will not get “stuck” mutating a group of similar inputs with high
scores and thus drowning out other interesting inputs.

3 Evaluation

We evaluate our fuzzer on seven resolvers, as listed in Table 1. Where possible we
disable features during compile time, to reduce the size of the binary and simplify
fuzzing. These features do not affect our evaluation, as these relate to system

https://github.com/barrucadu/resolved/tree/463644c83a93db3d20d574450f1106a2d0b627b9
https://github.com/bluejekyll/trust-dns/tree/0b6fefea3fefe1086fed4df6781550462de51553


10 J. Bushart, C. Rossow

integration, such as systemd, enhanced security with chroot and capabilities,
extra logging like dnstap, or HTTPS support. Most of these features have no
impact at all on the DNS protocol and HTTPS for DoH is not used by ResolFuzz
as UDP is more efficient for us. Each resolver is compiled from scratch using
LLVM with coverage instrumentation [31], which is available in clang and rustc,
as both are LLVM-based compilers. The containers are a Fedora 37 image.

3.1 Case Studies

In this section, we highlight our findings in three case studies.
resolved fails with query and missing CNAME: resolved misbehaves for

CNAME queries if no CNAME record exists. Instead of returning the expected NoEr-
ror response code, resolved returns ServFail. The CNAME record type redirects
queries for a domain to another canonical domain. This means a resolver must
follow the redirection, except here, because the original query is for the CNAME
type. This means the first answer is the final one.

PowerDNS Recursor self-loop: We discovered a bug in handling DNAME
RRs, similar to a known issue for CNAMEs [6]. The problem occurs if the result
after DNAME expansion matches the same DNAME again. DNAME and CNAME records
both provide a way to specify a new canonical place where information is stored.
In case of a CNAME RR like this.old.domain CNAME new.canonical.name, any
query for this.old.domain should be redirected to new.canonical.name and
the data from the new place should be used. A DNAME redirection is similar to
CNAME. A CNAME only applies for a single specific domain, but a DNAME applies
to a whole subtree. For example the DNAME RR old.domain DNAME new.name
means that any query for this. old.domain redirects to this. new.name. The
italic subdomain part is arbitrary and is preserved in the rewrite. The DNAME
can point to itself, by having the re-written part match the pattern, for exam-
ple, old.domain DNAME extra. old.domain, which will put extra many times
in the domain. When PowerDNS Recursor encounters such a DNAME record, it
applies the rewriting repeatedly. Consequently, in our setting, the resulting DNS
answer will contain the same DNAME record 16 times. Further, each time the
DNAME rewriting rule is applied, a synthetic CNAME record is created. Ultimately,
the resolver gives up resolving this infinite loop and returns a ServFail with
32 records. The effect is that PowerDNS Recursor spends time following the
loop and creating ever-increasing answers, thus wasting resources. The answer
becomes large, making it a target for reflective DDoS attacks [25].

Self-Sustained DoS in resolved and trust-dns: We found a vulnera-
bility in resolved and trust-dns that enables a self-sustaining DoS attack. The
vulnerability is caused by these resolvers answering DNS responses (QR bit=1).
When receiving responses on their listening port (UDP/53), both resolved and
trust-dns return a FormErr error to indicate that the request was malformed.

Blindly responding to responses, even with error messages, can be abused for
creating a traffic loop. If both resolvers are vulnerable, attackers can inject IP-
spoofed responses to provoke the two resolvers to send responses to each other
in an endless loop, causing a self-sustaining DoS attack. The traffic loop will not



ResolFuzz: Differential Fuzzing of DNS Resolvers 11

Table 2. Higher level categories of the common differences we found between resolver
outputs. Each category lists the number of rules that fall into it and gives an example.

Category Size Description Example

Configuration 6 Configurable behavior Limiting the maximal TTL values,
EDNS buffer sizes

Error Handling 9

Behavioral differences in
error messages
(ServFail, NotImp,
FormErr, Refused)

On receiving a query with TC bit
set, ServFail and FormErr
responses exist.

Incomparable 3 Values that always differ Random DNS ID.

Metadata 3
Metadata about the
captured results

Resolver Name,
redundant Length Values

Missing Features 3 Optional missing features EDNS Error Codes

Resolver Specific 10
Other uncategorized, but
resolver specific behavior

EDNS buffer size (512B in
PowerDNS vs. 1232B in others).

Upstream Queries 4
Behavior of the upstream
queries

QNAME Minimization,
re-transmissions

stop except when packet loss in the network causes the traffic to stop. Enough
looping traffic will overwhelm the resolver or network and cause a DoS.

3.2 Result Statistics

The described case studies were found over multiple runs. We now describe how
a single run of the fuzzer behaves and the kind of differences it finds.

The results of this section refer to a six-hour run of the fuzzer using all eight
configurations listed in Table 1. During that time, 7140 inputs were generated
or roughly 0.33/s. In total, the fuzzer made 198 240 comparisons, as each input
takes part in 28 comparisons. This resulted in 1903 distinct fingerprints. The
fingerprint count is larger than the number of root causes. For example, to trigger
the resolved and trust-dns bug the only prerequisite is a query with QR=1 bit
set, but a fingerprint includes all header fields.

We created 38 rules to describe benign differences, as shown in Table 2. The
rules are grouped into seven categories. The nine Error Handling rules capture
the variability of error messages (e.g., differences in error types). Resolver-specific
behavior is similarly sized with ten rules, but the behavior covered here is more
diverse. Two categories of differences will be found for any comparison of two
outputs, Metadata and Incomparable. There are some fixed values about the
captured results that are always different, such as the resolver names. In each
comparison the DNS ID and edge coverage information are incomparable.

The 38 rules cover between 2017 to 6555 (28.2% to 91.8%) of the differences
identified by the fuzzer, fluctuating based on the compared resolvers. Most sim-
ilar is the pair of BIND9 (v9.18) and PowerDNS Recursor. Both are mature im-
plementations and adhere to the DNS standard well. The worst pairing is Knot



12 J. Bushart, C. Rossow

Fig. 3. The number of times new coverage edges are found over time.

Resolver and trust-dns. The trust-dns recursor is quite new and not yet well
developed. As such it still has many missing features and bugs, all resulting in
differences. These numbers translate directly into differences not covered by our
rules. The pairing of Knot Resolver and trust-dns leads with 5067 (71.0%) uncov-
ered differences, while BIND9 and PowerDNS Recursor have only 490 (6.9%).
The gap towards the total of 7140 is caused by inputs where the comparison
was non-deterministic. We observed the highest rate here between both BIND9
configurations with 143 (2.0%) non-deterministic comparisons.

Fuzzing progress: We furthermore evaluate how much coverage our fuzzer
achieves in the resolvers’ code. This way we can understand when fuzzing sat-
urates, i.e., no longer reveals new results. The coverage percentage increases
sharply at the beginning, but then slows down but never stops. No resolver
reaches a high edge coverage, with the highest being around 16.0%. This can
be explained by the fact that we only measure the coverage between sending
a query and receiving a response. Any startup, background, or shutdown code
is not included in the coverage. While we aimed to remove as many untested
features as possible during compilation time, many features are still enabled but
never activated by our fuzzer, such as DNSSEC, DNS forwarding or authoritative
mode, and even complex features like Response Policy Zones (RPZs).

Figure 3 shows how often new edges are found over time. It shows more
clearly, that during the entire period, progress is made. The main part falls
into the first two hours, which is longer than the previous picture suggests. The
continuous progress is a good indicator showing that even after a longer time
ResolFuzz still makes progress and we have not yet reached the limits of it.

3.3 Bug and Vulnerability Disclosure

We reported all findings to the respective projects, except for one, which had no
contact information. All projects acknowledged our findings. Most quickly fixed
the issues, even releasing a security advisory RUSTSEC-2023-0041 [26], except
for PowerDNS Recursor which deemed the risk as acceptable.



ResolFuzz: Differential Fuzzing of DNS Resolvers 13

Fig. 4. The number of explainable differences between the resolver outputs. Only
explainable differences are shown. The gray line shows the total number of fuzzing
inputs tested. The gap between the gray line and the colored lines shows the number
of unexplainable differences. The categories are explained in Table 2.

4 Limitations

We now discuss limitations that arise out of the design decisions we took to
address the complex challenges of fuzzing DNS resolvers.

First of all, our fuzzer has no notion of time. Indeed, faking time jumps
requires knowledge of the resolver internals as these determine when time jumps
can be inserted and which parts they affect—internals we wanted to abstract
from. The Deckard [7] testing framework managed to solve some of the problems
and could be an inspiration for future work.

We use cache snooping as a generic mechanism to learn about the resolver’s
cache state. In some cases this fails, e.g., for specific query classes or resolvers,
such that we skip the records during diffing. Resolver-specific ways to retrieve the
cache status (e.g., via CLI tools or log files) would require resolver adjustments.

Furthermore, we did not implement all DNS features, such as DNSSEC [10,
22–24, 33]. Cryptographic operations are hard to fuzz, but may still represent
interesting attack targets for malicious actors. Some part-way solutions are pos-
sible, like using a single validity bit and then dynamically signing the records,
but we leave this for future work. Likewise, we ignored RPZ that can be used
to block certain domains or IP addresses. They work by sending further queries
and then changing or blocking the original request.



14 J. Bushart, C. Rossow

Table 3. Comparison of existing DNS testing tools, with a focus on fuzzing. The Client
and Server columns indicate whether the project ships with a client or server compo-
nent. Search Strategy indicates the strategy used for generating queries. Randomized
means that all modifications are chosen by a random number generator, without any
feedback. Targets indicates what the tool is looking for.

Project Cli. Srv. Search Strategy Targets

ResolFuzz yes yes
Evolutionary mutations
guided by code coverage
and differential testing

Crashes and differential
testing

Deckard [7] yes yes None. Scripted
communication.

Configurable checking.
Comparison to fixed values.

dns-fuzz-server [27] yes yes Randomized None
dns-fuzzer [17] yes no Randomized Crashes

honggfuzz [29] yes no Evolutionary, Code
coverage feedback Crashes

IBDNS [32] no yes Fixed, based on query None. Not a full tool.
nmap dns-fuzz [8] yes no Randomized Crashes

SCALE/Ferret [14] yes no Statespace guided input
generation

Diff. comparison between
servers and formal model.

We use a minimal configuration for each resolver, leaving most options as
their upstream default. Configurations we changed include the IP address to
listen, the root server hints, and the reduction of timeouts to speed up fuzzing.
We deem this configuration realistic and modification necessary for fuzzing. We
publish all our source code including configurations.

Recursive DNS resolution is the most complex part between clients, stub
resolvers, and AuthNS. Stub resolvers could be tested similarly to the recursive
resolvers, except they only forward the query to the recursive resolver.

5 Related Work

Automatic testing of network services has been subject to several other related
works [2, 8, 11, 14, 16, 17, 19, 20, 27, 29, 32, 34]. However, we are the first to create
an advanced fuzzer for DNS resolvers. Indeed, DNS is a particularly challenging
setting, as the resolver (i.e., the network service) acts as server and client at the
same time—but most existing fuzzing frameworks test only single connections.
Other projects solve DNS resolver fuzzing only partially. Related work can be
grouped into two main categories: DNS testing and evaluation tools, and network
fuzzers. We separately cover formal models for AuthNSes.

DNS testing: Due to the complexities in DNS and the difficulty of covering
a large input space, only few projects exist for testing or fuzzing DNS. Table 3
provides an overview of existing projects and their capabilities. Existing tools
often only target crashes in the DNS resolver [8,17,29]. This makes them unsuit-
able for finding more complex failure conditions, which we can identify with the



ResolFuzz: Differential Fuzzing of DNS Resolvers 15

differential testing approach. Some projects use basic randomization for input
generation. dns-fuzz-server [27] only creates random queries and responses, but
has no target conditions, like crashes, it is looking for. ResolFuzz uses a more
advanced evolutionary algorithm, which is better suited for complex inputs.

The Deckard [7] project is noteworthy in that it is a full testing framework
for DNS resolvers. It has extensive customization options, for query generations,
mocking AuthNSes, and checking the responses. This extensiveness is great for
writing detailed tests, but they often rely on the resolver implementation and
are not portable between different resolvers. Relying on scripted tests also means
unknown behavior cannot be revealed.

The Intentionally Broken DNS Server (IBDNS) [32] is a new project by Afnic
for testing DNS resolvers or DNS tools. It applies known defects to existing zone
files and serves them to clients. Its goal is to test DNS tools and DNS resolvers.
IBDNS is not public so we cannot describe it in detail.

Other DNS test frameworks are either old and unmaintained [28], only test
against a reference implementation [9], or are commercial with no public infor-
mation [30]. Testing against a reference output can be useful for limited features
or regression testing, but is not viable for covering larger input spaces, because
of a missing reference implementation.

Fuzzing Authoritative DNS Servers: Most relevant to ResolFuzz are the
projects by Kakarla et al. [13,14]. They tackle the challenge of fuzzing AuthNSes
in the two papers GRoot [13] and SCALE [14]. In GRoot they lay the foundations
by creating a formal model for the semantics of authoritative DNS. The model
creates equivalence classes (EC) for a given DNS zone file. Each EC captures
distinct behavior, like the difference between two different existing labels, and
combines variants like queries that match the same wildcard record. With this
model, they can symbolically execute these ECs and find bugs in the zones, like
lame delegations, if the sub-zone has no reachable nameserver, or rewriting loops
when CNAME/DNAME records form a loop leading to unresolvable names. SCALE
builds an executable version of the GRoot model, with the ability to create zone
files and matching queries. Using symbolic execution they find a wide variety of
behaviors and create matching test cases using a constraint solver. That is an
expensive process, so the created zone files are limited to four records. The test
cases are fed into various AuthNSes and the responses are checked for compliance
with the RFCs. The AuthNSes only agree in 35.0% on the same answer. The
rest is grouped by fingerprints, to make investigations easier. Using SCALE they
could identify 30 new bugs.

Network service fuzzing: Apart from DNS with its special requirements,
there are other network fuzzing approaches, which come in many variants.

AFLnet [19] is a greybox fuzzer. It has a corpus of network exchanges, which
it mutates and sends to the target. AFLnet is guided by code coverage and
learns a state machine for the target server. Fuzzing uses a forkserver, which
allows for fast restarts and parallelization. SnapFuzz [2] is an iteration of AFLnet
with increased performance, achieved with new binary rewriting. The rewriting
replaces file system accesses with a custom in-memory implementation, replaces



16 J. Bushart, C. Rossow

the TCP and UDP socket calls with UNIX domain sockets, and optimizes the
forkserver. Both AFLnet and SnapFuzz are designed to fuzz single client-server
connections, which makes them unsuitable for DNS resolvers.

Lin et al. [16] use GANs to infer the protocol of a black box network service.
The GAN learns how to generate attack packets for a protocol, not only the
protocol syntax. They only tested their approach on stateless protocols so far,
which makes it unsuitable for DNS.

Hoque et al. [11] use a model checker for finding temporal semantic bugs in
protocols. From a protocol implementation, they extract a finite state machine
describing it. The temporal properties are protocol specific and require expert
knowledge, in contrast to ResolFuzz.

Differential fuzzing has been used successfully in contexts other than DNS.
TCP-Fuzz [34] by Zou et al. uses differential checking as one bug detection
method. They develop an input creation strategy that keeps track of dependen-
cies between packets and system calls. The coverage metric is based on the state
transitions of the TCP stack. DPIFuzz [20] by Reen and Rossow uses differential
fuzzing for QUIC. It generates QUIC frames, and mutates them with shuffling,
duplication, and deleting data. While both works are related due to their dif-
ferential checking approach, they are not directly comparable. TCP and QUIC
work point-to-point and on a well-defined sequence of packets. A DNS resolver
has many point-to-point connections and there is no clear sequence of packets,
as each point-to-point connection runs independently.

6 Conclusion

Our analyses encourages more research on securing DNS resolvers, a critical
part of the internet infrastructure. With ResolFuzz, our differential fuzzer, we
found multiple security-relevant bugs in both well-established and new resolver
implementations. DNS’ lack of a formal model makes semantic analysis hard,
but we showed that differential fuzzing with specialized matching rules can be
a powerful tool to find bugs. We publish ResolvFuzz as open-source in the hope
that it will help to improve the security of DNS resolvers. This work provides
a starting point for further research into the security of DNS resolvers and we
hope to uncover more bugs through improved insights into resolver decisions and
covering more complex deployment scenarios.

Data Availability To ease reproducibility, we have released i) the full source
code of ResolFuzz, ii) the build scripts and configuration files for the resolvers,
iii) the raw data of our evaluation, iv) a list of found differences, and v) scripts
for further analysis. The code and data are available online at
https://github.com/dns-differential-fuzzing/dns-differential-fuzzing.
Acknowledgements Our sincere thanks belongs to the anonymous reviewers
for their valuable feedback and suggestions which helped to improve the paper
Furthermore, we thank the Saarbrücken Graduate School of Computer Science
for their support.

https://github.com/dns-differential-fuzzing/dns-differential-fuzzing


ResolFuzz: Differential Fuzzing of DNS Resolvers 17

References

1. Andrews, M.P., Huque, S., Wouters, P., Wessels, D.: DNS Glue Requirements in
Referral Responses. Internet-Draft draft-ietf-dnsop-glue-is-not-optional-08, Inter-
net Engineering Task Force (Feb 2023), https://datatracker.ietf.org/doc/draft-ietf-
dnsop-glue-is-not-optional/08/, work in Progress

2. Andronidis, A., Cadar, C.: SnapFuzz: high-throughput fuzzing of network applica-
tions. In: ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis (2022). https://doi.org/10.1145/3533767.3534376

3. Cambus, F.: DNS related RFCs, https://www.statdns.com/rfc/
4. Consortium, I.S.: General DNS reference information, https://bind9.readthedocs.

io/en/latest/general.html
5. Contavalli, C., van der Gaast, W., Lawrence, D.C., Kumari, W.A.: Client Subnet

in DNS Queries. RFC 7871 (May 2016). https://doi.org/10.17487/RFC7871, https:
//www.rfc-editor.org/info/rfc7871

6. CVE-2022-48256. Available from MITRE, CVE-ID CVE-2022-48256. (Jan 2023),
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48256

7. CZ.NIC: Deckard, https://gitlab.nic.cz/knot/deckard/
8. dns-fuzz in nmap, https://nmap.org/nsedoc/scripts/dns-fuzz.html
9. Ereche, M.V.: Dns completitude and compliance testing (Oct 2020),

https://github.com/mave007/dns_completitude_and_compliance/tree/
2a18967d103d232e9072c4474e8c731dc3d79f7a

10. Hoffman, P.E.: DNS Security Extensions (DNSSEC). RFC 9364 (Feb 2023). https:
//doi.org/10.17487/RFC9364, https://www.rfc-editor.org/info/rfc9364

11. Hoque, M.E., Chowdhury, O., Chau, S.Y., Nita-Rotaru, C., Li, N.: Analyzing oper-
ational behavior of stateful protocol implementations for detecting semantic bugs.
In: 47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (2017). https://doi.org/10.1109/DSN.2017.36

12. IANA: Root files, https://www.iana.org/domains/root/files
13. Kakarla, S.K.R., Beckett, R., Arzani, B., Millstein, T.D., Varghese, G.: GRooT:

proactive verification of DNS configurations. In: SIGCOMM ’20: Proceedings of
the 2020 Annual conference of the ACM Special Interest Group on Data Commu-
nication on the applications (2020). https://doi.org/10.1145/3387514.3405871

14. Kakarla, S.K.R., Beckett, R., Millstein, T.D., Varghese, G.: SCALE: automatically
finding RFC compliance bugs in DNS nameservers. In: 19th USENIX Symposium
on Networked Systems Design and Implementation (2022)

15. Labs, N.: Unbound – RFC compliance, https://nlnetlabs.nl/projects/unbound/rfc-
compliance/

16. Lin, Z., Moon, S., Zarate, C.M., Mulagalapalli, R., Kulandaivel, S., Fanti, G., Sekar,
V.: Towards oblivious network analysis using generative adversarial networks. In:
Proceedings of the 18th ACM Workshop on Hot Topics in Networks (2019). https:
//doi.org/10.1145/3365609.3365854

17. Meinke, R.: dns-fuzzer (Mar 2019), https://github.com/guyinatuxedo/dns-fuzzer/
tree/6487b0053d9ee227b515490b9e00289b15a1bbd5

18. Mockapetris, P.: Domain names – concepts and facilities. RFC 1034 (Nov 1987).
https://doi.org/10.17487/RFC1034, https://www.rfc-editor.org/info/rfc1034

19. Pham, V., Böhme, M., Roychoudhury, A.: AFLNET: A greybox fuzzer for network
protocols. In: 13th IEEE International Conference on Software Testing (2020).
https://doi.org/10.1109/ICST46399.2020.00062

https://datatracker.ietf.org/doc/draft-ietf-dnsop-glue-is-not-optional/08/
https://datatracker.ietf.org/doc/draft-ietf-dnsop-glue-is-not-optional/08/
https://doi.org/10.1145/3533767.3534376
https://doi.org/10.1145/3533767.3534376
https://www.statdns.com/rfc/
https://bind9.readthedocs.io/en/latest/general.html
https://bind9.readthedocs.io/en/latest/general.html
https://doi.org/10.17487/RFC7871
https://doi.org/10.17487/RFC7871
https://www.rfc-editor.org/info/rfc7871
https://www.rfc-editor.org/info/rfc7871
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-48256
https://gitlab.nic.cz/knot/deckard/
https://nmap.org/nsedoc/scripts/dns-fuzz.html
https://github.com/mave007/dns_completitude_and_compliance/tree/2a18967d103d232e9072c4474e8c731dc3d79f7a
https://github.com/mave007/dns_completitude_and_compliance/tree/2a18967d103d232e9072c4474e8c731dc3d79f7a
https://doi.org/10.17487/RFC9364
https://doi.org/10.17487/RFC9364
https://doi.org/10.17487/RFC9364
https://doi.org/10.17487/RFC9364
https://www.rfc-editor.org/info/rfc9364
https://doi.org/10.1109/DSN.2017.36
https://doi.org/10.1109/DSN.2017.36
https://www.iana.org/domains/root/files
https://doi.org/10.1145/3387514.3405871
https://doi.org/10.1145/3387514.3405871
https://nlnetlabs.nl/projects/unbound/rfc-compliance/
https://nlnetlabs.nl/projects/unbound/rfc-compliance/
https://doi.org/10.1145/3365609.3365854
https://doi.org/10.1145/3365609.3365854
https://doi.org/10.1145/3365609.3365854
https://doi.org/10.1145/3365609.3365854
https://github.com/guyinatuxedo/dns-fuzzer/tree/6487b0053d9ee227b515490b9e00289b15a1bbd5
https://github.com/guyinatuxedo/dns-fuzzer/tree/6487b0053d9ee227b515490b9e00289b15a1bbd5
https://doi.org/10.17487/RFC1034
https://doi.org/10.17487/RFC1034
https://www.rfc-editor.org/info/rfc1034
https://doi.org/10.1109/ICST46399.2020.00062
https://doi.org/10.1109/ICST46399.2020.00062


18 J. Bushart, C. Rossow

20. Reen, G.S., Rossow, C.: Dpifuzz: A differential fuzzing framework to detect DPI
elusion strategies for QUIC. In: ACSAC ’20: Annual Computer Security Applica-
tions Conference (2020). https://doi.org/10.1145/3427228.3427662

21. RFC editor search DNS, https://www.rfc-editor.org/search/rfc_search_detail.
php?title=DNS&page=All

22. Rose, S., Larson, M., Massey, D., Austein, R., Arends, R.: DNS Security In-
troduction and Requirements. RFC 4033 (Mar 2005). https://doi.org/10.17487/
RFC4033, https://www.rfc-editor.org/info/rfc4033

23. Rose, S., Larson, M., Massey, D., Austein, R., Arends, R.: Protocol Modifications
for the DNS Security Extensions. RFC 4035 (Mar 2005). https://doi.org/10.17487/
RFC4035, https://www.rfc-editor.org/info/rfc4035

24. Rose, S., Larson, M., Massey, D., Austein, R., Arends, R.: Resource Records for
the DNS Security Extensions. RFC 4034 (Mar 2005). https://doi.org/10.17487/
RFC4034, https://www.rfc-editor.org/info/rfc4034

25. Rossow, C.: Amplification hell: Revisiting network protocols for DDoS abuse. In:
21st Annual Network and Distributed System Security Symposium (2014)

26. Remote attackers can cause denial-of-service (packet loops) with crafted dns pack-
ets, https://rustsec.org/advisories/RUSTSEC-2023-0041.html

27. Sakaguchi, T.: dns-fuzz-server (Sep 2019), https://github.com/sischkg/dns-fuzz-
server/tree/6f45079014e745537c2f564fdad069974e727da1

28. Standcore: Standcore dns conformance, https://www.standcore.com/
dnsconformance.tgz

29. Swiecki, R.: Honggfuzz bind9 (Nov 2020), https://github.com/google/honggfuzz/
tree/37e8e813c9daa94dff29654b262268481d8c53ee/examples/bind

30. Synopsys: Dns server test suite data sheet, https://www.synopsys.com/software-
integrity/security-testing/fuzz-testing/defensics/protocols/dns-server.html

31. The Clang Team: Sanitizercoverage, https://clang.llvm.org/docs/
SanitizerCoverage.html

32. van der Wal, M.: Introducing ibdns: The intentionally broken dns server (Oct
2022), https://indico.dns-oarc.net/event/44/contributions/949/

33. Weiler, S., Blacka, D.: Clarifications and Implementation Notes for DNS Security
(DNSSEC). RFC 6840 (Feb 2013). https://doi.org/10.17487/RFC6840, https://
www.rfc-editor.org/info/rfc6840

34. Zou, Y., Bai, J., Zhou, J., Tan, J., Qin, C., Hu, S.: TCP-Fuzz: detecting memory
and semantic bugs in TCP stacks with fuzzing. In: 2021 USENIX Annual Technical
Conference (2021)

https://doi.org/10.1145/3427228.3427662
https://doi.org/10.1145/3427228.3427662
https://www.rfc-editor.org/search/rfc_search_detail.php?title=DNS&page=All
https://www.rfc-editor.org/search/rfc_search_detail.php?title=DNS&page=All
https://doi.org/10.17487/RFC4033
https://doi.org/10.17487/RFC4033
https://doi.org/10.17487/RFC4033
https://doi.org/10.17487/RFC4033
https://www.rfc-editor.org/info/rfc4033
https://doi.org/10.17487/RFC4035
https://doi.org/10.17487/RFC4035
https://doi.org/10.17487/RFC4035
https://doi.org/10.17487/RFC4035
https://www.rfc-editor.org/info/rfc4035
https://doi.org/10.17487/RFC4034
https://doi.org/10.17487/RFC4034
https://doi.org/10.17487/RFC4034
https://doi.org/10.17487/RFC4034
https://www.rfc-editor.org/info/rfc4034
https://rustsec.org/advisories/RUSTSEC-2023-0041.html
https://github.com/sischkg/dns-fuzz-server/tree/6f45079014e745537c2f564fdad069974e727da1
https://github.com/sischkg/dns-fuzz-server/tree/6f45079014e745537c2f564fdad069974e727da1
https://www.standcore.com/dnsconformance.tgz
https://www.standcore.com/dnsconformance.tgz
https://github.com/google/honggfuzz/tree/37e8e813c9daa94dff29654b262268481d8c53ee/examples/bind
https://github.com/google/honggfuzz/tree/37e8e813c9daa94dff29654b262268481d8c53ee/examples/bind
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing/defensics/protocols/dns-server.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing/defensics/protocols/dns-server.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://indico.dns-oarc.net/event/44/contributions/949/
https://doi.org/10.17487/RFC6840
https://doi.org/10.17487/RFC6840
https://www.rfc-editor.org/info/rfc6840
https://www.rfc-editor.org/info/rfc6840

	ResolFuzz: Differential Fuzzing of DNS Resolvers
	Introduction
	Methodology
	Threat Model
	Goals
	Challenges
	Addressing the Challenges
	Fuzzing Infrastructure
	Input Generation and Mutation
	Fuzzing Output and Processing
	Finding Bugs

	Evaluation
	Case Studies
	Result Statistics
	Bug and Vulnerability Disclosure

	Limitations
	Related Work
	Conclusion


