
DNS Unchained: Amplified Application-Layer
DoS Attacks Against DNS Authoritatives

Jonas Bushart and Christian Rossow

CISPA, Saarland University
{jonas.bushart,rossow}@cispa.saarland

Abstract. We present DNS Unchained, a new application-layer DoS
attack against core DNS infrastructure that for the first time uses am-
plification. To achieve an attack amplification of 8.51, we carefully chain
CNAME records and force resolvers to perform deep name resolutions—
effectively overloading a target authoritative name server with valid re-
quests. We identify 178 508 potential amplifiers, of which 74.3 % can be
abused in such an attack due to the way they cache records with low
Time-to-Live values. In essence, this allows a single modern consumer
uplink to downgrade availability of large DNS setups. To tackle this new
threat, we conclude with an overview of countermeasures and suggestions
for DNS servers to limit the impact of DNS chaining attacks.

Keywords: DNS • Amplification Attack • Application-Layer Attack

1 Introduction

The Domain Name System (DNS) is at the core of today’s Internet and is in-
evitable for networked applications nowadays. Not only is DNS the primary
mean for mapping and translating domain names to IP addresses. Also, sev-
eral other applications heavily depend on DNS, such as load balancing (e.g.,
for Content Delivery Networks), anti-spam methods (e.g., DKIM [6], SPF [19],
or IP address blacklists [9]) and TLS certificate pinning [10,15]. We rely on
the availability of these services for everyday communication. Yet recent in-
cidents have demonstrated how vulnerable DNS is to Denial-of-Service (DoS)
attacks, even for hosters that massively invest in over-provisioning and deploy
highly-reliable anycast networks. For example, in October 2016, attacks against
the DNS hoster Dyn have knocked Twitter, Netflix, Paypal and Spotify offline
for several hours [14]—simply because the authoritative name servers for these
services were hosted by Dyn and became unresponsive due to a successful Dis-
tributed DoS (DDoS) attack against Dyn.

Up to now, DDoS attempts against the DNS infrastructure have focused
mostly on volumetric attacks, where attackers aim to exhaust the bandwidth
that is available to DNS hosters. In a successful attack, benign DNS queries are
dropped such that normal users no longer see responses from the DNS hosters. A
popular and powerful example of volumetric attacks are so called amplification
attacks [22,44], where miscreants abuse that open services (such as NTP servers)

reflect answers to IP-spoofed requests. Yet any of these rather simple volumetric
attacks can be filtered with the help of data scrubbing services such as Arbor,
Cloudflare, or Incapsula.

In this paper, we explore application-layer attacks against core DNS infras-
tructures, namely authoritative name servers (ANSs). Compared to volumetric
DoS attacks, application-layer attacks are more appealing to adversaries. In par-
ticular, they (i) are significantly harder to distinguish from benign traffic, (ii)
not only target bandwidth, but also computational resources, and (iii) do not
rely on IP address spoofing and can be launched even though providers deploy
egress filtering [36]. This makes them attractive for botnets.

We start by describing existing forms of application-layer attack against DNS
that overload a target ANS with valid DNS requests. In the simplest form, a sin-
gle attack source can send queries to domains hosted by this name server. Yet in
practice, attackers have distributed the attack and use resolvers as intermediaries
in so called random prefix attacks [1,47]. They are a form of flooding DNS attacks
and get their name from the characteristic prefixes used to circumvent resolver
caching. Such attacks can be launched from malware-infected devices [2] or even
JavaScript and already have the potential to put large DNS hosters offline (e.g.,
Dyn in 2016).

We then describe a novel form of application-layer attacks that floods the
victim with an order of magnitude more queries per second than random pre-
fix attacks. We dub this attack DNS Unchained, as it abuses the chaining
behavior of CNAME and DNAME resource records in DNS. The core idea of our
attack borrows from random prefix attacks. However, instead of blindly send-
ing out queries to random domains hosted by the target ANS, the attacker
carefully crafts long chains of DNS records (a.target.com→b.other.com, b.
other.com→c.target.com, . . .) that involve the target ANS in every other step.
This has the effect that resolvers query the target ANS not just once, but several
times—until the end of the chain is reached. To the best of our knowledge, this is
the first DoS attack that combines amplification with application-layer attacks.
We find that the vast majority of resolvers support chain lengths of 9–27 (and
more) elements, resulting in tenfold amplification due to the number of times a
target ANS is queried per request the attacker sends.

We complete this paper with an extensive discussion how such attacks can
be remedied. We foresee countermeasures that can be deployed by ANS, such
as detecting malicious DNS chains or enforcing lower bounds, ensuring more
caching, for TTL values. discuss how resolvers can mitigate attacks by capping
DNS chains without compromising the benign usage of chains in DNS.

Our contributions can be summarized as follows:

– We present an application-layer attack against DNS that create an order of
magnitude more queries per second than existing attacks. For this attack,
we revisit how DNS chains can be abused to amplify traffic, and are the first
to combine application-layer attacks with amplification.

– We analyze the real-world impact by performing Internet-wide measurements
of the resolver landscape and test for the achievable amplification.

– We present and discuss the efficacy of countermeasures against application-
layer DoS attacks. This discussion helps to defend against DNS Unchained
and DNS application-layer attacks in general.

2 Threat Model

We now define the treat model and describe the attacker’s capabilities, required
resources, and our assumptions about the victim. The adversary in our model
aims to degrade the availability of an authoritative name server (ANS). ANSs
answer DNS queries for a particular zone, as queried by any DNS resolver. Next
to mapping domain names to IP addresses, ANSs provide several other services,
e.g., anti-spam methods (e.g., DKIM [6], SPF [19], or IP address blacklists [9])
and TLS certificate pinning [10,15], making them fundamental on the Internet.

In the highly redundant DNS setting, resolvers choose between all ANSs of a
particular zone [33,53]. Yet even a single unresponsive ANS will cause decreased
performance for the whole domain within the zone. In a redundant setup with
multiple anycast sites, the loss of one anycast site will still affect the networks
routing to this site, therefore the responsiveness of every single ANS matters.

In our model, the attacker targets a specific ANS, e.g., to render domains
hosted by this ANS unreachable. We assume that the attacker can host at least
one attacker-controlled zone on the target ANS. This involves that the attacker
can create arbitrary DNS records that are within their zone, i.e., subdomains
for a given second-level domain. We believe that this assumption is easily ful-
filled. For example, if domains are hosted by web hosters such as GoDaddy or
Rackspace, an attacker can set up a domain at the same hoster as the victim’s
website. Another possibility is that the victim’s domain is hosted using one of
the DNS hosters like NS1, Amazon Route 53, Dyn, or Google Cloud DNS.

Creating an account may be a problem for an attacker who wants to stay
anonymous. We note that in such cases the attacker could use fake or stolen IDs
to register an account.

The only other requirement on the attacker is the ability to send DNS queries
to open DNS resolvers (“resolvers” hereafter). Attackers can find such resolvers
by scanning the Internet UDP port 53 in less than an hour [11]. Internet scans are
not a limiting factor, as there are also lists of resolvers available for download [4].
Also, in contrast to amplification DDoS attacks [44], the attacker in our model
does not need to spoof the source IP address of attack traffic. This allows an
attacker to operate from a single source, or to increase anonymity and bandwidth
by leveraging DDoS botnets to launch attacks.

3 Application Layer DDoS Against DNS

Application layer DoS attacks abuse a higher-level protocol—in our context
DNS—and tie resources of other participants of the same protocol. This distin-

guishes application-level attacks from other forms of DoS attacks, e.g., volumet-
ric attacks, which are agnostic to protocol and application, but relatively easy
to filter and defend against. Application-layer attacks can target more different
resources like CPU time and upstream bandwidth, while volumetric attacks can
only consume downstream bandwidths, making them interesting for many cases.
In this section we will first introduce DNS water torture attacks, an emerging
application layer DoS technique that has already severely threatened the DNS
infrastructure. We will then show that a smart attacker can craft delicate chains
of DNS records to leverage resolvers for even more powerful attacks than those
possible with DNS water torture.

3.1 DNS Water Torture

DNS water torture attacks—also known as random prefix attacks—flood the
victim’s DNS servers with requests such that the server runs out of resources to
respond to benign queries. Such attacks typically target the authoritative name
server (ANS) hosting the victim’s domain, such that domains hosted at the target
server become unreachable. Resolvers would typically cache the responses of the
queried domains, and therefore mitigate näıve floods in that they refrain from
identical follow-up queries. To this end, attackers evade caching by using unique
domain names for each query, forcing resolvers to forward all queries to the
target ANS. A common way is prepending a unique sequence to the domain—
the random prefix. In practice, attackers either use monotonically increasing
counters, hash this counter, or use a dictionary to create prefixes. As the DNS
infrastructure, on the other hand, heavily relies on caching on multiple layers in
the DNS hierarchy, ANS are typically not provisioned to withstand many unique
and thus non-cached requests—leaving ANS vulnerable to water torture attacks.

Water torture attacks were observed for the first time in early 2014 [1,41,51]
and have since been launched repeatedly. The main ingredient for this attack is
sufficient attack bandwidth, which overloads the target ANS with “too many”
requests. As this does not require IP spoofing, attackers can easily facilitate
botnets to maximize their attack bandwidth. In fact, several large DDoS botnets
(e.g., Mirai [2] or Elknot [28]) support DNS water torture.

While water torture attacks have been fairly effective, their näıve concept
has noticeable limitations:

1. Water torture attacks can usually be easily detected because the attack
traffic shows exceptionally high failure rates for particular domains, as none
of the requested (random-looking) domain names actually exists. NXDOMAIN
responses are normally caused by configuration error and therefore often
monitored.

2. Water torture attacks provide no amplification, as every query by the at-
tacker eventually results in only a single query to the target ANS—unless
queries are resent in case of packet loss. The victim-facing attack traffic is
thus bound by number of queries that the attacker can send. This is in stark
contrast to volumetric attacks that offer more than tenfold amplification [44].

3.2 Chaining-based DNS DoS Attack

We now propose a novel type of DNS application layer attacks that abuse chains
in DNS to overcome the aforementioned limitations of water torture, yet stay
in a similar threat model (Sect. 2). The main intuition of our attack is that an
attacker can utilize request chains that amplify the attack volume towards a
target ANS. This is achieved via aliases, i.e., a popular feature defined in the
DNS specification and frequently used in practice.

CNAME Records DNS request chains exist due to the functionality of creating
aliases in DNS, e.g., using standard CNAME resource records (RR) [31,32]. A
CNAME RR, short for canonical name, works similar to pointers in programming
languages. Instead of providing the desired data for a resolver, CNAME specifies
a different DNS location from where to request the RR. One common use is to
share the same RRs for a domain and the “www” subdomain. In this case, a CNAME

entry for “www.example.com.” points to “example.com.”. When a client asks
the resolver for the RRs of a certain type and domain, the resolver recursively
queries the ANS for the RRs, resulting in three cases to consider:

Domain does not exist or no data The domain does not exist (NXDOMAIN
status) or no matching resource record (including CNAME records) was found
(NODATA status). The ANS returns this status.

Resource records exists The desired resource record’s data is immediately
returned by the ANS. The DNS specification enforces that either data, or
an alias (i.e., CNAME) may exist for a domain, but never both—i.e., there was
no CNAME record for the request domain.

Domain exists and contains CNAME response The resolver must follow the
CNAME regardless of the requested record type. This may cause the resolver
to send new queries, potentially even to different ANSs.

The last case allows chaining of several requests. In case of CNAME records,
resolvers have to perform multiple lookups to load the data (unless the records
are cached). CNAME records can also be chained, meaning the target of a CNAME

records points to another CNAME record. This increases the number of lookups per
initial query. There is no strict limit to the length of chains. However, resolvers
typically enforce a limit to prevent loops of CNAME records. After reaching this
limit, resolvers either provide a partial answer, or respond with an error message.

Note that CNAME records provide delegation between arbitrary domains, i.e.,
also to domains in unrelated zones. If all the CNAME records are hosted in the
same zone, the ANS can provide multiple CNAMEs in one answer, by already
providing the next records in the chain. By chaining CNAME records between two
different ANSs, i.e., by alternating between them, an ANS can only know the
next CNAME entry in the chain.

DNS Chaining Attack The possibility to chain DNS queries via CNAME RRs
opens a new form of application-layer DoS attack. Let an attacker set up two

a.target -ans.com. IN CNAME b.intermediary.org.

c.target -ans.com. IN CNAME d.intermediary.org.

e.target -ans.com. IN CNAME f.intermediary.org.

g.target -ans.com. IN CNAME h.intermediary.org.

i.target -ans.com. IN TXT "Huge record at the end."

b.intermediary.org. IN CNAME c.target -ans.com.

d.intermediary.org. IN CNAME e.target -ans.com.

f.intermediary.org. IN CNAME h.target -ans.com.

h.intermediary.org. IN CNAME i.target -ans.com.

Listing 1. Two zones “target-ans.com.” and “intermediary.org.”, which contain
a CNAME that ends at the ith element in TXT records.

A R

target
ANS

intermediary
ANS

①

② ③a.target-ans.com

b.intermediary.com

d.intermediary.com

a.target-ans.com

c.target-ans.com

Fig. 1. Attacker A uses resolver R to attack the target ANS. The dashed arrows
represent the CNAME pointers between the domain. 1 – 3 show the order of CNAME

records in the chain. The setup is according to Listing 1.

domains on different ANSs. The first domain will be hosted by the target ANS,
and the second (or optionally further) domain(s) by some intermediary ANS(s).
The zones are configured to contain long CNAME chains alternating between both
domains. An example can be found in Listing 1, where a chain ping-pongs be-
tween the target and an intermediary ANS, until the record with prefix i. If an
attacker now sends a single name lookup to query for the record at the start
of the chain, the resolver has to follow all chain elements to retrieve the final
RR. A large final RR, such as the TXT, additionally targets the ANS’s upstream
bandwidth. Figure 1 shows the queries sent between the attacker A, a resolver
R, and both ANSs. The dashed arrows represent the CNAME pointers between
the different domains, while the circled numbers (1 — 3) represent the order in
which they are resolved. The attacker queries the first chain element and forces
the resolver to query the target ANS repeatedly.

This provides severe amplification, as a single request by the attacker results
in several requests towards the target ANS. For each query by the attacker
N queries are sent by the resolver, where N is equal to the minimum of the
chain length and a resolver dependent limit. The chain length is controllable by
the attacker and effectively unlimited, but resolver implementations limit the
maximum recursion depth (see Sect. 4.2). The amplification, as observed by the
target ANS, is dN/2e, as every second chain record is served by the target ANS.

For illustrative purposes, Fig. 1 just shows a single resolver. In practice, an
attacker would likely aim to spread the attack requests to thousands of resolvers,
that is, not to overload a single resolver—recall that in our threat model the ANS
is the victim (not the resolver). Furthermore, given two domains, an attacker can
easily create multiple chains, e.g., by using distinct subdomains for each chain.
The number of chains is bound (if at all) only by the number of subdomains
supported by the target ANS.

There are no strict requirements for the intermediary ANS. In general, inter-
mediary ANSs can be hosted by a hosting provider, self-hosted by the attacker,
or even distributed between multiple hosters. The only exception is that the
intermediary and target ANS should be not the same server. Some ANSs will
follow CNAME chains if the ANS is authoritative for all domains in the chain. Re-
quiring at least one dedicated intermediary ANSs ensures that only one answer
can be returned. If the ANS is configured to only return one CNAME record, the
same ANS can be used, doubling the amplification achieved with this attack.
On the other extreme, it is perfectly possible to use multiple intermediate ANS,
as long as every second element in the chain still points to the target ANS. Dis-
tributing the intermediary ANS will increase the reliability and reduce the load
for each intermediary ANS, and raise the complexity in preventing the attack.

While the requirements for this attack may seem high, we note that attackers
are already known to use complex setups for their operations. One example
regarding DNS are fast-flux networks [16] which provide resilience against law-
enforcement take-downs and work similar to CDNs. Attackers use fast changing
DNS entries to distribute traffic across sometimes hundreds of machines.

3.3 Leveraging DNS Caching

DNS resolvers rely on record caching, such that queries for the same domain
do not require additional recursive resolution if the resolver has those records
cached. Technically, each resource record contains a Time-to-Live (TTL) value,
which specifies how long it may be cached by a resolver, i.e., be answered without
querying the ANS. Caching has a large influence on the DNS chaining attack, as
it determines how frequent resolvers will query target and intermediary ANSs.

An attacker would aim for two compatible goals. On the one hand, given an
attack time span, the target ANS should receive as many queries as possible.
This means that caching for those records that are delivered by the target ANS
should be ideally avoided. On the other hand, an attacker wants to minimize the
number of queries sent to the intermediary ANS, as they would otherwise slow
down the overall attack. We discuss both parts individually in the following.

Avoiding Caching at Target ANS: Determining the overall impact on
ANS requires an understanding how often each resolver can be used by the
attacker during an attack. That is, if all records of a chain are cached, the
resolver would not query the target ANS. To solve this problem, attackers can
disable caching for records hosted by the target ANS. Specifying a TTL value
of zero indicates that the resource should never be cached [32, Sect. 3.2.1]. We

assume that resolvers honor a TTL of zero, i.e., do not cache such entries. We
evaluate this assumption in Sect. 4.1.

However, we have observed that resolvers implement additional micro-caching
strategies to further reduce the number of outgoing queries. A strategy we have
typically observed is that resolvers coalesce multiple identical incoming or out-
going requests. If a resolver detects that a given RR is not in the cache, it starts
requesting the data from the ANS. Queries by other clients for the same RR
may arrive in the meantime. A micro-caching resolver can answer all outstand-
ing client queries at once when the authoritative answer arrives, even if the RR
would not normally be cached (i.e., TTL=0). In our context, such micro-caching
might occur if the resolver receives a query for a CNAME record of which the tar-
get is not cached, but another query for the same target is already outstanding.
Coalescing identical queries thus results in fewer outgoing queries to the ANSs,
because a single authoritative reply is used to answer multiple client queries.
This reduces the amplification caused by the resolver. Micro-caching is a defense
mechanism against cache poisoning attacks which make use of the “birthday
attack”, such as the Kaminsky attack [7,18].

We thus define the per-resolver query frequency as the maximum number of
queries per second an attacker can send to a given resolver without any query
being answered by caching or micro-caching. It equals the optimal attack speed:
Fewer queries would not use the resolver’s full amplification potential, more
queries would waste attack bandwidth.

Leveraging Caching at Intermediary ANSs: Recall that every other
chain element points to a record hosted by an intermediary ANS. In principle,
this would require resolvers to query the intermediary ANS for every second
step in the chain, which significantly reduces the frequency in which the target
ANS receives queries. However, those records do not change, so we can leverage
caching to increase this frequency. By setting a non-zero TTL for the records
hosted by the intermediary ANSs, the resolvers only have to fetch the records
on the first query of the chain. After the caches are “warmed up”, the resolvers
will only fetch the records from the target ANS. The frequency of attack queries
is thus largely determined by the round trip time (RTT) between resolver and
target ANS. In contrast, the RTT between resolver and intermediary ANS is
irrelevant.

3.4 Attack Variant with DNAME Resource Records

One drawback of the CNAME-based attack is, that it requires definitions of records
per chain. If an attacker aims to abuse multiple chains in parallel (e.g., to increase
the per-resolver query frequency), they have to define dozens of CNAME records.
One slight variation of the CNAME-based attack thus uses DNAME records. Using
DNAME resource records [5,43] allows arbitrary many subdomains for the chain
with only a single entry. Conceptually, DNAMEs are similar to CNAMEs and are cre-
ated like CNAME records, e.g., “www.target-ans.com. IN DNAME intermediary.

org.”. The difference is that DNAME records allow the ANS to replace the occur-
rence of the owner (left-hand side) by the target (right-hand side) for all queries

to a subdomain of the owner. For example, a query to “a.www.target-ans.
com.” would be rewritten to “a.intermediary.org.” with the given rule.

Technically, the answer for a DNAME resource record does not only contain
the DNAME resource records. For backwards compatibility, ANSs will create a
synthetic CNAME resource record for the exact query domain. Resolvers can also
directly support DNAME resource records, providing a better user experience. How-
ever, resolvers that lack support for DNAME records fall back using the CNAME

records. An attacker can abuse those resolvers to query chains defined with
DNAME entries, for simulating an arbitrary number of chains and avoid caching.
Those resolvers have to use the synthetic CNAME records to follow the chain. Be-
cause the records are synthetically created for the exact query domain, they are
indistinguishable from “normal” CNAME records in a zone. This forces the resolver
to query the ANS for each newly observed subdomain.

Resolvers that support DNAMEs can use a cached entry to directly answer
queries for all subdomains, even if the exact subdomain has never been observed.
This improves the resolver’s performance, as only one cache entry has to be
stored (compared to many CNAMEs) and authoritative queries only need to be
issued, if the DNAME entry expires (compared to once for each new subdomain).
This effectively limits the number of simulated chains to one, which falls back to
the same properties as the classic CNAME-based chain. Resolvers without DNAME

support can be queried as often as permitted by the resolver’s resources, without
paying attention to any macro- or micro-caching. Furthermore, handling DNAME

queries consumes more resources at the target ANS, as resolvers usually create
and send synthetic CNAME records in addition to DNAME records.

4 Evaluation

In the following we analyze the behavior of resolvers, with Internet-wide mea-
surements, and analyze four selected implementations in more detail. We will
use those measurements to determine the per-resolver query frequency, possible
amplification factor, and overall impact, focusing only on the CNAME variant.

In our manual analysis we focus on the four resolvers Bind1 9.10.5,Unbound2

1.6.3, PowerDNS Recursor3 4.0.6, and Knot Resolver4 1.3.2, because they are
popular, open source, actively maintained, and backed by DNS operators. All
tests were performed in the default configuration, as provided by Fedora 25. For
the measurements, we set up two virtual machines (VMs). The first VM hosts the
four resolvers, while the second VM hosts an ANS. We configured the resolvers to
use the ANS for all queries, by setting corresponding root hints and configuring
the ANS accordingly. Note that in this minimal setup the second VM hosts both

1 https://www.isc.org/downloads/bind/
2 https://www.unbound.net/
3 https://www.powerdns.com/recursor.html
4 https://www.knot-resolver.cz/

https://www.isc.org/downloads/bind/
https://www.unbound.net/
https://www.powerdns.com/recursor.html
https://www.knot-resolver.cz/

the target and intermediary ANS. We thus changed Bind’s configuration such
that it does not follow CNAME chains5, to simulate two independent ANSs.

We scanned the Internet via Zmap [11] and a custom DNS module, following
their recommended scanning guidelines. Networks could opt-out from our scans.
We encoded the IP address of the scan target into each DNS query, which allows
us to correlate the scanned IP address with the traffic captured at our ANS.
We used PowerDNS with a custom back-end as the ANS authoritative for the
domains we scanned for. PowerDNS will never follow CNAME chains and only
return a single CNAME record, simulating the two zone setup.

4.1 Caching

So far we assumed that resolvers honor non-cachable DNS resource records (i.e.,
TTL=0). We evaluate this assumption and study the micro-caching strategies
by different DNS resolver implementations.

First, we want to get a general understanding how the different implementa-
tions handle non-cacheable responses. We configured our ANS to serve a short
CNAME chain alternating between two zones. All RRs in the chain are served with
TTL=0. We repeatedly issued the same query to the resolver and observed the
responses. Bind, Unbound, and PowerDNS do not cache the response and served
it with a TTL of zero. Knot serves the record with a TTL of five, but also does
not cache the response.

To test the micro-caching behavior, we sent multiple queries to the resolvers
for the same domain with slight delays between them, and observed how frequent
resolvers queried the ANS. The delay was chosen such that the resolver has
forwarded the previous query to the ANS, but not yet received the response.
This happens if queries arrive faster than the RTT between resolver and target
(RTTRT). We delayed DNS responses from the authoritative VM to the resolvers,
to simulate the effect of different values for RTTRT . We observed micro-caching
for identical incoming or outgoing queries for all tested resolvers. Effectively,
this limits an attacker to start a chain once per RTTRT . The RTT is measured
between resolver and target ANS, because resource records of the intermediary
ANS can be cached by the resolver and thus do not limit the lookup speed.

Next, we observe the behavior for longer delays. We delayed the second query
until the resolver processed the response of the first queried (and hence started
to resolve the second chain element). This simulates queries which arrive RTTRT

after the previous query arrived. PowerDNS and Knot fully honor the no-caching
TTL and perform a full lookup for all queries. Bind performs one full lookup per
second, then only issues one query to the first element of the chain per additional
client query. Similarly, Unbound only performs one full lookup per second, but
then issues one query to the last element of the chain, which is not a CNAME RR.

Summarizing the result, the per-resolver query frequency for PowerDNS and
Knot is #chains

RTTRT
. As each chain has distinct domains, micro-caching is irrelevant

5 Config option additional-from-auth with two zones.

S ORR

OF

RR
2

RR
1

ANS

10 054 077
4 170 710

178 508
60 570ORR

Fig. 2. Connections between different resolver types. Our scanner (S) finds open for-
warder (OF) and open recursive resolver (ORR). A forwarder forwards the query to
one or multiple recursive resolver (RR). Recursive resolver (RR and ORR) query the
authoritative name server (ANS). Dashed arrows mark optional connections, like query-
ing multiple recursive resolver or sending a response to our scanner. An empty arrow
head marks a query response.

across chains. Bind and Unbound can be queried at most for #chains
1 s+RTTRT

. Realis-
tically, the attacker does not know when the resolver’s internal clock ticks over
to the next second. Before starting the next query, the attacker has to ensure a
full second passes after the record was cached, which happens RTTRT after the
query is received by the resolver. Thus at 1 s +RTTRT the record is guaranteed
to have expired. Querying more frequently reduces amplification.

We analyzed the code of Bind and Unbound to understand why they only
issue one query per second. Both use a time value, which is rounded to seconds
for all cache operations, explaining the observed cache invalidation once per
second. Bind special cases the first CNAME RR in a query and always perform
the authoritative lookup, even when it was fetched from cache. Unbound’s cache
inserts referral resource records, which CNAMEs are one variant of, regardless of
the TTL, but not the last chain element.

Internet Measurements While all locally tested resolvers honor non-cacheable
RRs, resolvers deployed on the Internet may behave differently. To assess this,
we performed a full Internet scan querying for a wildcard A RR with a TTL=0
hosted by our ANS. The queried domain encodes the scan target’s IP address,
which allows us to (i) ensure that all records are fetched from our ANS and are
not cached and (ii) match the scan targets with the queries observed at the ANS.
All responses are recorded and filtered to remove domains which do not belong
to our test. Figure 2 shows a (simplified) diagram of the connections between
our scanner, resolvers, and our ANS. The dashed gray lines mark the point of
our packet capturing. Below them are the number of IP addresses we found.

4 170 710 resolvers responded to our scan query, of which 3 097 203 answers
had a TTL of zero. For the same day (2017-08-02), Shadowserver’s DNS scan [45]
reports 4 198 025 resolvers found, i.e., a deviation of just 0.7 %. The scan shows
that 74.3 % of all resolvers honor TTL=0 and they could be used for attacks.

Of those resolvers that enforce a minimal non-zero TTL in the response, most
enforce large TTLs, making them unsuitable for DNS Unchained attacks. The
ten most common TTL values we found are multiples of ten or 60. In decreasing
order of occurrence they are 300, 600, 3600, 1, 30, 900, 60, 150, 14 400, and 20,
which taken together account for 24.8 % (1 033 419) of all responses.

4.2 Amplification

After seeing that the vast majority of resolvers does not cache TTL=0 RRs, we
now measure how much amplification in-the-wild resolvers would enable. The
amplification factor is determined by the maximum number of elements of the
chain that will be requested by each resolver. We thus configured a chain of 100
RRs and requested the first element from each resolver. The last chain element
is an A record and all RRs carry TTL=0.

Bind follows the chain 17 times, whereas PowerDNS and Unbound only per-
form 12 and 9 lookup steps, respectively. Knot Resolver performs 33 lookups.
Bind is the only implementation that consistently responds with a “no error”
status code. The other three reply with a SERVFAIL status code if the end of the
chain could not be reached.

Via our scans, we discovered 10 054 077 open resolvers and 178 508 recursive
resolvers. Figure 2 gives an overview of the connections between scanner and
resolvers. Open resolvers are open to the Internet and can be used by anyone.
They can be recursive resolvers or simple forwarders, which forward the query to
a recursive resolver. Recursive resolvers perform the recursive lookup procedure
which we can detect at our ANS. We can count and distinguish the two types of
resolvers based on the traffic captured at our ANS. If the encoded IP address of
the scan target and the source IP address of the resolver querying our ANS are
identical, then the resolver is an open recursive resolver, otherwise the encoded
IP address belongs to an open forwarding resolver. We expect a much higher
number of open resolvers than recursive resolver, because as Kührer et al. [24]
found, most open resolvers are routers or other embedded devices. There is little
reason for them to host a recursive resolver, because they require more resources.

Figure 3 shows how many resolvers support a given chain length. There are
clear spikes for common values like nine, used by Unbound and Microsoft DNS,
or 17 as used by Bind. Another spike is at length 21, yet we are not aware which
software causes it. The quick drop-off at the beginning is caused by resolvers,
which query the same domain from different IP addresses often in the same
subnet. In these cases only one of the resolvers performs the full recursion, the
others stop early leading to the drop. This could be caused by open resolvers
querying multiple recursive resolvers in a short amount of time. Alternatively, it
might result from an attempt to pre-fetch data for multiple resolvers as soon as
one recursive resolver in the pool sees a new domain name.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627
+

0

10000

20000

30000

40000

50000

60000

Length of chain

#R
es

ol
ve

rs

Fig. 3. Supported chain length configurations for 178 508 recursive resolvers discovered
with a full Internet scan. The spike at nine corresponds to Unbound and Microsoft DNS
version; Bind shows up as the spike at 17. The cause of the 21-spike is unknown to us.

From the data we can conclude that resolvers do offer a considerable amplifi-
cation potential. Intuitively, the amplification factor is the number of queries seen
by the target ANS in relation to the number of queries sent by the attacker. Fac-
tors larger than one mean the impact on the target is larger than the attacker’s
resources used for the attack. We can calculate the expected amplification ratio
for all recursive resolvers by ∑∞

i=1(
⌈
i
2

⌉
× ni)∑∞

i=1 ni

where ni is the number of resolvers that support chains of length i. The formula
assumes that the first element in the chain is hosted on the target ANS, which
is the more beneficial setup for an attacker.

All resolvers together (178 508) provide an amplification factor of 7.59. Fo-
cusing only on resolvers, which provide an amplification factor >1 (chains of
length three or longer) results in an amplification factor of 8.51 with 156 481
available resolvers. These numbers are lower bounds, because the early drop-off
in Fig. 3 is caused by resolvers that query the same domain name from different
IP addresses (which we then conservatively count as individual resolvers).

We already mentioned in Sect. 3.2 that some ANSs do not follow CNAME

chains, even if they are authoritative for all domains. This is a performance
optimization reducing the work required to answer a query. For ANSs, which
do not follow chains, all elements of the chain can be hosted on the target ANS
thus an amplification factor of 14.34 can be achieved resulting in 89 % stronger

attacks. Effectively, this removes the intermediary ANSs from the chain and all
resource records need to have a zero TTL value.

4.3 Overall Impact

Based on these observations, we conclude that CNAME chains enable for attacks
that are an order of magnitude larger (measured in queries per second) than näıve
water torture attacks. In practice, ANSs can handle 400 000 qps to 2 500 000 qps
(queries per second) [3,20,34,42]. An attacker only needs a fraction—determined
by the amplification factor—of queries compared to that number. Often even
lower query rates are sufficient to overload the ANS, because the ANS also
receives (and has to process) benign queries.

A single chain, which is resolved by all non-caching resolvers, causes more
than a million queries to the target ANS (7.59 × 178 508 × 75 % u 1 016 157).
Each resolver can be queried roughly every second per chain (assuming a low
RTTRT). Using as few as two or three chains is enough to overload all commonly
deployed ANS. For three chains the attacker has to send 535 524 pps (packets per
second). A DNS query packet with a 20 character long domain name requires
104 B (including Ethernet preamble and inter-packet gap) for transmission over
the wire. The attacker needs 445.6 Mbit/s to overload even the fastest ANS.

In case the target ANS does not follow the CNAME chain, the stronger attack
can be used where all elements are hosted on the target ANS. A single chain
causes over 1.9 million queries (14.34× 178 508× 75 % u 1 919 854) reducing the
required bandwidth for the attacker accordingly.

5 Countermeasures

We will now discuss countermeasures to reduce the impact of DNS application-
level attacks. First, we cover the authoritative view, how zones could be managed
and the effect of response rate limiting. Then we look at the behavior of recursive
resolvers and how they could reduce the impact on ANSs.

5.1 Identification and Remedy by ANSs

A hard requirement for the proposed attack is that the attacker can create CNAME
RRs on the target ANS. This gives the target ANS the power to inspect and
deny problematic or malicious configurations or completely remove zones from
the ANS.

Detection of CNAME Chains Zone files for the DNS Unchained require sev-
eral CNAME records pointing to external domains. If the attacker chooses random
or pseudo-random domain names, ANSs can use this as an indicator for an at-
tack. The target ANS operator could additionally check the target of CNAMEs
and discourage (or even forbid) CNAMEs that point to CNAME RRs in other do-
mains (which is already discourage according to the specification). Exceptions

are likely required for content delivery networks and cloud provider. Especially
CNAME chains, i.e., several entries that eventually lead back to the same zone are
not useful, because both records are controlled by the same entity.

The ANS operator needs to implement periodic checks of all zones with
CNAME entries. Only checking RRs during creation is insufficient, as the attacker
can build the chain such that no CNAME points to another CNAME during cre-
ation. Given the same domains as in Listing 1, the attacker would first create
“a.target-ans.com.” while the target domain (“b.intermediary.org.”) ei-
ther does not exist or only contains other types, e.g., of type A. Checking the
RR for “a.target-ans.com.” will not show any suspicious behavior. Now the
same steps are repeated with “b.intermediary.org.”. This forces a non-trivial
amount of work on the ANS. A too long periodicity in the checking would allow
the attacker to use the time between checks for the attack, thus the checks have
to be somewhat frequent.

Lower Limit for Time-to-Live (TTL) Values In contrast to water torture
attacks, chaining attacks fall apart if the chain’s RRs are cached. Using a random
prefix to circumvent caching is only possible for the specific combination of using
DNAME RRs and abusing only those resolvers that do not support DNAME. Thus,
forcing a minimal TTL of only a few seconds will have considerable impact, as it
limits the per-resolver query frequency to #chains

TTL+RTTRT
compared to #chains

1 s+RTTRT
.

Thus, a 10 s TTL will reduce the impact by roughly a factor of ten. However,
an attacker can use more chains if a minimal TTL is enforced, which makes
the setup more complicated. On the one hand, CNAME RRs with short (or zero)
TTLs are used also for benign reasons, e.g., to implement DNS-based failover.
On the other hand, in light of chaining attacks, we consider serving A and AAAA

records with short TTLs as the better solution, which also closer resembles the
desired semantics. Note, that a CNAME RR offers an additional canonical name
for an already existing record, which is a relationship that rarely changes (and
thus allows for non-zero TTLs).

5.2 Response Rate Limiting (RRL)

Response Rate Limiting (RRL) is an effective technique to counter standard
DNS-based amplification attacks. If DNS servers are abused for reflective ampli-
fication attacks [24,44], the attacker sets the request’s source to the IP address of
the victim. In turn, resolvers unknowingly flood the victim with DNS responses.
To prevent such abuse, resolvers can implement IP address-based access control,
which effectively turns them into closed resolvers.

Yet this is not an option for intended open resolvers (e.g., Google DNS,
Quad9, etc.) and especially not for ANSs, as they have to be reachable by the
entire Internet. Here, RRL plays an important role. RRL limits the frequency
of how fast a client IP address can receive responses. The benefit for reflection
attacks is clear, where a single source (the victim) seemingly requests millions
of requests and now only faces a fraction of the actual responses due to RRL.

In principle, RRL also seems to mitigate chaining attacks. Yet enabling RRL
has its downsides, especially if resolvers hit a rate limit configured at an ANS.
Resolvers will then retry queries, lacking an answer, which again increases the
load on the ANS. Filtering all resolver traffic can even increase the incoming
traffic ten-fold as observed by Verisign during a water torture attack [51, p. 24].

Additionally, RRL is implemented with a slip rate, which specifies how often
the ANS will answer with a truncated response instead of dropping the packet.
For example, a slip rate of two results in a truncated answer for every second
query, the other times the query is dropped. Truncated responses then cause the
resolver to retry the connection using TCP instead of UDP, which drastically
increases the overall processing overhead for the ANS.

An ideal RRL configuration would thus never limit resolvers, as this may
actually increase the required resources for the ANS in case of application-layer
attacks. Filtering or rate limiting needs to be performed closer to the source.
Näıvely, one could deploy RRL at resolvers to rate limit the initial attack re-
quests (“chain starts”) sent to them. However, then again the per-resolver re-
quest frequency is as low as one request per second, which would only be blocked
by an overly aggressive RRL configuration. Even worse, if attacks are carried out
via botnets, even those RRL configurations would not slow down the attacks.

5.3 Back-off Strategies

In case of packet loss at the target ANS, resolvers resend queries and thereby
cause additional attack traffic. It is thus important to rate limit outgoing queries
of resolvers and to implement suitable back-off strategies in order to give over-
loaded ANSs the chance to recover.

To assess how resolvers act in such situations, we have measured how four
resolver implementations behave when querying a zone with two ANSs of which
both are not reachable. Bind sends a total of five packets with a delay of 800 ms
in between packets. The ANS is chosen at random. After the third failed packet,
Bind has an exponential back-off with factor two. PowerDNS only sends out two
packets in total with a delay of 1500 ms in between. Unbound sends in total
the most queries with 27 to 30. Worse, Unbound always sends two queries as a
pair, which might go to the same or a different ANS. There is a delay of 375 ms
between the pairs, which is doubled every two to four pairs. Knot has the most
complicated retry strategy. Knot starts with sending UDP queries alternating to
both servers, with a delay of 250 ms in between. After a total of two seconds, two
TCP queries are sent to the first ANS, with a delay of 1000 ms between them.
Six seconds after the start the same pattern of UDP and TCP queries is sent to
the second ANS.

Bind’s and PowerDNS’s behavior are not problematic, as the number of re-
tries is small and retry delay high. Especially problematic for Unbound is that it
sends two identical queries to the same ANS without a delay between. Delaying
retries is a good balance between providing fast answers (in case of packet loss)
and not sending duplicate queries (in case of high round trip times). A delay of
250 ms between retries will cause unnecessary retries for many users. With our

Internet scan we found that 9045 recursive resolvers (14.9 %) have RTTs larger
than 250 ms to both our ANSs and additional 19 773 resolvers (32.6 %) have such
a high RTT to one of our ANSs.

An additional strategy is serving stale cache records [26]. Stale cache records
are records in the resolver’s cache of which the TTL has expired. A resolver
can use them based on the assumption that normally records contain working
data, even if the TTL has expired (e.g., IP addresses change less often than the
TTL of records expires). This technique is not new and already implemented in
Bind 9.12 [29] and used by OpenDNS [35] and Akamai [27]. The usability im-
proves as client will receive an answer, which likely is usable, instead of receiving
an error and failing to connect.

5.4 Recursion Depth Limit

Finally, also resolvers can more strictly limit the length of CNAME chains. Sec-
tion 4.2 has shown that the resolvers do not agree on the maximum chain length.
Limiting the length too strictly is harmful, as chains also exist for legitimate
reasons—such as Content Delivery Networks (CDNs) and DDoS protection ser-
vices. The domain owner can often configure their DNS to point to a subdomain
of the CDN and the CDN uses itself one or multiple CNAME RRs.

Legitimate use-cases for CNAME chains must ensure the length is supported
by all DNS resolvers, if they want to support all users. We inspected the Ac-
tive DNS [21] data set to identify benign chains. We extracted the CNAME entries
from 2017-10-05 to reconstruct the longest benign chains, which consists of eight
elements (seven CNAMEs and one final RR). This fits to the shortest recursion
limit of nine elements, which we observed for Unbound. Others [38] report nine
elements as the longest legitimate chain they found and certificate authorities
are also only required to support chains with nine elements while fetching CAA

RRs [13]. Based on those observations, a smaller recursion limit can be advised.
We recommend supporting nine elements in a chain, which is the shortest value
of all tested resolvers and covers benign chains. Such a recursion depth limit
would limit the amplification of chaining attacks to factor five.

6 Related Work

Application-Layer DDoS in DNS: Several application-layer DDoS defenses
have been proposed in the past [12,30,39,52]. Many defenses are not immedi-
ately applicable to DNS. Protocol changes, such as client puzzles, would need
widespread support, which is unrealistic to achieve in a short to medium time
frame. Countermeasures which introduce more latency are especially problem-
atic, as DNS is tuned for high efficiency. Filtering techniques, such as egress or
ingress filtering, do not apply to DNS Unchained, because it works without IP
address spoofing. Blocking DNS traffic can even lead to more inbound traffic [51]
and always risks blocking legitimate users.

The closest work to us is research on DNS water torture attacks. They were
first presented in Feb 2014 [1] and are a known phenomenon for DNS operators
[17,48,50,51]. The DNS operator community focused on implementing mitiga-
tions, mainly to stabilize recursive resolver. Takeuchi et al. [47] propose a system
to detect DNS water torture attacks based on lexical and structural features of
domain names. They train a naive Bayes-classifier and test it on captured traffic
of their universities network. Our attack is related to DNS water torture as both
are flooding attacks using resolvers, but water torture faces several limitations—
including the fact that they can be easily detected.

Reflection and Amplification Attacks: DNS also played a role in recent
amplification attacks. The general risk of reflection attacks was identified by Pax-
son [37] and its full amplification potential presented by Rossow [44]. Different
proposals to detect and defend amplification attacks [23,36,44,49] were made.
They cover approaches to combat the bandwidth exhaustion, like client puzzles,
or prevent source address spoofing. In the context of DNS, Kührer et al. [24,25]
analyzed the amplification potential of DNS resolvers. They found millions of
open DNS resolver on embedded devices or routers, meaning the openness of
the resolver is likely a configuration issue. DNSSEC’s potential to increase the
amplification of DNS resolvers has also been documented [40]. While some at-
tacks in fact abuse DNS, still, in contrast to our work, they do not represent
application-layer attacks and are easy to filter.

CNAME Chaining: The possibility to chain CNAME RRs is well-known and
documented. For example, Shue and Kalafut [46] use differences in recursion
strategies to fingerprint resolver implementations. Dagon et al. [8] use CNAME

chains to amplify the number of queries from each resolver. They need multiple
queries by the same resolver to analyze them for source port randomization of
the resolver. Pfeifer et al. [38] measures the overhead for resolvers while looking
up CNAME chains and recommend that ANSs should refuse CNAME chains before
loading the zone files. Furthermore, they recommend that ANSs should also
query destinations of CNAME RRs, similar to our recommendation in Sect. 5.1.
In contrast to prior work our attack focuses on the authoritative name servers
instead of the resolvers.

7 Conclusion

We have presented a new DDoS attack against DNS authoritatives that leverages
amplification on the application layer. DNS Unchained achieves an amplifica-
tion of 8.51 using standard DNS protocol features, by chaining alias records
(e.g., CNAME) and forcing resolvers to repeatedly query the same authoritative
name server. We performed full Internet scans and found 10 054 077 open DNS
resolvers and 178 508 recursive resolvers. We determined that 74.3 % of those
resolvers support uncachable DNS responses, creating a large pool of amplifiers
that can be abused for chaining attacks.

We also discussed countermeasures to the new threat of DNS chaining at-
tacks. This includes measures applicable to DNS operators to find and limit

problematic DNS zones as well as enforcing minimal Time-to-Live values al-
lowing caching. DNS resolvers can also be changed to have less aggressive re-
transmission on unavailable name servers and limit chains to nine elements. A
wide deployment of any of these techniques would severely degrade the perfor-
mance of the proposed attacks, and we hope that our work raises awareness for
the importance of these measures.

Acknowledgment

We thank our anonymous reviewers whose useful comments helped us improv-
ing the quality of our paper. This work was supported by the German Federal
Ministry of Education and Research (BMBF) through funding for the BMBF
project 16KIS0656 (CAMRICS).

References

1. Andrew: Water torture: A slow drip DNS DDoS attack (Feb 2014), https://

secure64.com/water-torture-slow-drip-dns-ddos-attack/

2. Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J.,
Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., Kumar, D., Lever,
C., Ma, Z., Mason, J., Menscher, D., Seaman, C., Sullivan, N., Thomas, K., Zhou,
Y.: Understanding the mirai botnet. In: 26th USENIX Security Symposium (2017)

3. Bellis, R.: Benchmarking DNS reliably on multi-core systems (Jul 2015), https:
//www.isc.org/blogs/benchmarking-dns/

4. Censys DNS lookup full IPv4 (2017), https : / / censys . io / data /

53-dns-lookup-full_ipv4

5. Crawford, M.: Non-terminal DNS name redirection. Tech. rep., RFC Editor (1999),
https://doi.org/10.17487/RFC2672

6. Crocker, D., Hansen, T., Kucherawy, M.S.: Domainkeys identified mail (DKIM)
signatures. Tech. rep., RFC Editor (2011), https://doi.org/10.17487/RFC6376

7. CVE-2008-1447. Available from MITRE, CVE-ID CVE-2008-1447. (Jul 2008),
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1447

8. Dagon, D., Antonakakis, M., Day, K., Luo, X., Lee, C.P., Lee, W.: Recursive DNS
architectures and vulnerability implications. In: Proceedings of the Network and
Distributed System Security Symposium (2009)

9. DNSBL information – spam database and blacklist check, https://www.dnsbl.
info/

10. Dukhovni, V., Hardaker, W.: The dns-based authentication of named entities
(DANE) protocol: Updates and operational guidance. Tech. rep., RFC Editor
(2015), https://doi.org/10.17487/RFC7671

11. Durumeric, Z., Wustrow, E., Halderman, J.A.: Zmap: Fast internet-wide scanning
and its security applications. In: Proceedings of the 22th USENIX Security Sym-
posium (2013)

12. Gilad, Y., Herzberg, A., Sudkovitch, M., Goberman, M.: Cdn-on-demand: An af-
fordable ddos defense via untrusted clouds. In: 23rd Annual Network and Dis-
tributed System Security Symposium (2016)

https://secure64.com/water-torture-slow-drip-dns-ddos-attack/
https://secure64.com/water-torture-slow-drip-dns-ddos-attack/
https://www.isc.org/blogs/benchmarking-dns/
https://www.isc.org/blogs/benchmarking-dns/
https://censys.io/data/53-dns-lookup-full_ipv4
https://censys.io/data/53-dns-lookup-full_ipv4
https://doi.org/10.17487/RFC2672
https://doi.org/10.17487/RFC6376
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1447
https://www.dnsbl.info/
https://www.dnsbl.info/
https://doi.org/10.17487/RFC7671

13. Hallam-Baker, P.: RFC Errata for RFC 6844 ”DNS Certification Authority Au-
thorization (CAA) Resource Record”. Errata 5065, RFC Editor (2017), https:

//www.rfc-editor.org/errata/eid5065
14. Hilton, S.: Dyn analysis summary of friday october 21 attack, https://dyn.com/

blog/dyn-analysis-summary-of-friday-october-21-attack/
15. Hoffman, P.E., Schlyter, J.: The dns-based authentication of named entities

(DANE) transport layer security (TLS) protocol: TLSA. Tech. rep., RFC Editor
(2012), https://doi.org/10.17487/RFC6698

16. Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and detecting fast-flux
service networks. In: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2008 (2008)

17. Internet Systems Consortium: Pseudo Random DNS Query Attacks & Resolver
Mitigation Approaches (2015), https://www.nanog.org/sites/default/files/
nanog63-dnstrack-winstead-attacks.pdf

18. Kaminsky, D.: It’s the end of the cache as we know it. Presented at Black Ops
2008

19. Kitterman, S.: Sender policy framework (SPF) for authorizing use of domains in
email, version 1. Tech. rep., RFC Editor (2014), https://doi.org/10.17487/

RFC7208
20. Knot DNS benchmark (2017), https://www.knot-dns.cz/benchmark/
21. Kountouras, A., Kintis, P., Lever, C., Chen, Y., Nadji, Y., Dagon, D., Antonakakis,

M., Joffe, R.: Enabling network security through active DNS datasets. In: Research
in Attacks, Intrusions, and Defenses - 19th International Symposium (2016)

22. Krämer, L., Krupp, J., Makita, D., Nishizoe, T., Koide, T., Yoshioka, K., Rossow,
C.: Amppot: Monitoring and defending against amplification ddos attacks. In:
Research in Attacks, Intrusions, and Defenses - 18th International Symposium
(2015)

23. Kreibich, C., Warfield, A., Crowcroft, J., Hand, S., Pratt, I.: Using Packet Sym-
metry to Curtail Malicious Traffic. In: Proceedings of the 4th Workshop on Hot
Topics in Networks (Hotnets-VI). College Park, MD, USA (2005)

24. Kührer, M., Hupperich, T., Bushart, J., Rossow, C., Holz, T.: Going wild: Large-
scale classification of open DNS resolvers. In: Proceedings of the 2015 ACM Internet
Measurement Conference (2015)

25. Kührer, M., Hupperich, T., Rossow, C., Holz, T.: Exit from hell? reducing the
impact of amplification ddos attacks. In: Proceedings of the 23rd USENIX Security
Symposium (2014)

26. Lawrence, D., Kumari, W.: Serving stale data to improve dns resiliency. Internet-
Draft draft-ietf-dnsop-serve-stale-00, IETF Secretariat (2017), http://www.ietf.
org/internet-drafts/draft-ietf-dnsop-serve-stale-00.txt

27. Lawrence, T.: Akamai’s DNS contribution to internet resilience, https://blogs.
akamai.com/2017/09/akamais-dns-contribution-to-internet-resiliency.

html
28. Liu, Y., Wang, H.: The Elknot DDoS botnets we watched. Presented at VB2016

Denver, https://www.virusbulletin.com/conference/vb2016/abstracts/

elknot-ddos-botnets-we-watched
29. McNally, M.: BIND 9.12.0 release notes, https://kb.isc.org/article/

AA-01554/0/BIND-9.12.0-Release-Notes.html
30. Mirkovic, J., Reiher, P.L.: A taxonomy of ddos attack and ddos defense mecha-

nisms. Computer Communication Review (2004)
31. Mockapetris, P.V.: Domain names - concepts and facilities. Tech. rep., RFC Editor

(1987), https://doi.org/10.17487/RFC1034

https://www.rfc-editor.org/errata/eid5065
https://www.rfc-editor.org/errata/eid5065
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://doi.org/10.17487/RFC6698
https://www.nanog.org/sites/default/files/nanog63-dnstrack-winstead-attacks.pdf
https://www.nanog.org/sites/default/files/nanog63-dnstrack-winstead-attacks.pdf
https://doi.org/10.17487/RFC7208
https://doi.org/10.17487/RFC7208
https://www.knot-dns.cz/benchmark/
http://www.ietf.org/internet-drafts/draft-ietf-dnsop-serve-stale-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-dnsop-serve-stale-00.txt
https://blogs.akamai.com/2017/09/akamais-dns-contribution-to-internet-resiliency.html
https://blogs.akamai.com/2017/09/akamais-dns-contribution-to-internet-resiliency.html
https://blogs.akamai.com/2017/09/akamais-dns-contribution-to-internet-resiliency.html
https://www.virusbulletin.com/conference/vb2016/abstracts/elknot-ddos-botnets-we-watched
https://www.virusbulletin.com/conference/vb2016/abstracts/elknot-ddos-botnets-we-watched
https://kb.isc.org/article/AA-01554/0/BIND-9.12.0-Release-Notes.html
https://kb.isc.org/article/AA-01554/0/BIND-9.12.0-Release-Notes.html
https://doi.org/10.17487/RFC1034

32. Mockapetris, P.V.: Domain names - implementation and specification. Tech. rep.,
RFC Editor (1987), https://doi.org/10.17487/RFC1035

33. Müller, M., Moura, G.C.M., de Oliveira Schmidt, R., Heidemann, J.S.: Recursives
in the wild: engineering authoritative DNS servers. In: Proceedings of the 2017
Internet Measurement Conference (2017)

34. Nominum: Vantio cacheserve 7 (Jun 2015), https://nominum.com/wp-content/
uploads/2015/06/Vantio-CacheServe7-DataSheet.pdf

35. OpenDNS SmartCache, https://www.opendns.com/opendns-smartcache/
36. P. Ferguson, D. Senie: BCP 38 on network ingress filtering: Defeating denial of

service attacks which employ ip source address spoofing. http://tools.ietf.

org/html/bcp38 (May 2000)
37. Paxson, V.: An analysis of using reflectors for distributed denial-of-service attacks.

Computer Communication Review (2001)
38. Pfeifer, G., Martin, A., Fetzer, C.: Reducible Complexity in DNS. In: IADIS Int.

Conf. WWW/Internet 2008 (ICWI 2008) (2008)
39. Ranjan, S., Swaminathan, R., Uysal, M., Nucci, A., Knightly, E.W.: Ddos-shield:

Ddos-resilient scheduling to counter application layer attacks. IEEE/ACM Trans.
Netw. (2009)

40. van Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSEC and its potential for ddos
attacks: a comprehensive measurement study. In: Proceedings of the 2014 Internet
Measurement Conference (2014)

41. Risk, V.: Resolver DDOS mitigation, https : / / www . isc . org / blogs /

tldr-resolver-ddos-mitigation/

42. Risk, V.: BIND9 performance history (Aug 2017), https://www.isc.org/blogs/
bind9-performance-history/

43. Rose, S., Wijngaards, W.C.A.: DNAME redirection in the DNS. Tech. rep., RFC
Editor (2012), https://doi.org/10.17487/RFC6672

44. Rossow, C.: Amplification hell: Revisiting network protocols for ddos abuse. In:
21st Annual Network and Distributed System Security Symposium (2014)

45. Shadowserver Foundation: DNSScan Shadowserver Foundation (Jan 2018), https:
//dnsscan.shadowserver.org/stats/

46. Shue, C.A., Kalafut, A.J.: Resolvers revealed: Characterizing DNS resolvers and
their clients. ACM Trans. Internet Techn. (2013)

47. Takeuchi, Y., Yoshida, T., Kobayashi, R., Kato, M., Kishimoto, H.: Detection of
the DNS water torture attack by analyzing features of the subdomain name. JIP
(2016)

48. Van Nice, B.: Drilling down into DNS DDoS (2015), https://www.nanog.org/

sites/default/files/nanog63-dnstrack-vannice-ddos.pdf

49. Wang, X., Reiter, M.K.: Mitigating bandwidth-exhaustion attacks using congestion
puzzles. In: Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security (2004)

50. Weber, R.: Drilling down into DNS DDoS data (2015), https://indico.dns-oarc.
net/event/21/contribution/29/material/slides/0.pdf

51. Weinberg, M., Barber, P.: Everyday attacks against Verisign-operated DNS infras-
tructure (2015), https://indico.dns-oarc.net/event/21/contribution/24

52. Xie, Y., Yu, S.: A novel model for detecting application layer ddos attacks. In:
Interdisciplinary and Multidisciplinary Research in Computer Science (2006)

53. Yu, Y., Wessels, D., Larson, M., Zhang, L.: Authority server selection in DNS
caching resolvers. Computer Communication Review (2012)

https://doi.org/10.17487/RFC1035
https://nominum.com/wp-content/uploads/2015/06/Vantio-CacheServe7-DataSheet.pdf
https://nominum.com/wp-content/uploads/2015/06/Vantio-CacheServe7-DataSheet.pdf
https://www.opendns.com/opendns-smartcache/
http://tools.ietf.org/html/bcp38
http://tools.ietf.org/html/bcp38
https://www.isc.org/blogs/tldr-resolver-ddos-mitigation/
https://www.isc.org/blogs/tldr-resolver-ddos-mitigation/
https://www.isc.org/blogs/bind9-performance-history/
https://www.isc.org/blogs/bind9-performance-history/
https://doi.org/10.17487/RFC6672
https://dnsscan.shadowserver.org/stats/
https://dnsscan.shadowserver.org/stats/
https://www.nanog.org/sites/default/files/nanog63-dnstrack-vannice-ddos.pdf
https://www.nanog.org/sites/default/files/nanog63-dnstrack-vannice-ddos.pdf
https://indico.dns-oarc.net/event/21/contribution/29/material/slides/0.pdf
https://indico.dns-oarc.net/event/21/contribution/29/material/slides/0.pdf
https://indico.dns-oarc.net/event/21/contribution/24

	DNS Unchained: Amplified Application-Layer DoS Attacks Against DNS Authoritatives

